No. 6.-The American Caecilians ${ }^{1}$

By Emiett Reid Duni

An interest in American Caecilians, begun in 1920 when I found a few specimens of Gymnopis in Costa Rica, was enhanced when I took a specimen of a new species in western Panamá in 1923. In 1928 I attempted, rather unsuccessfully, to list the North American forms. In Europe in 1929, as a holder of a John Simon Guggenheim Memorial Fellowship, I took the opportunity to examine the American Caecilians in the collection of the British Museum of Natural History and in the principal museums of the continent. Since my return I have examined practically all the material in the United States, in Panamá, and in Costa Rica, and have been sent extensive collections by the Instituto La Salle in Bogotá, by the Museu Paulista in São Paulo, and by the Museu Nacional in Rio de Janeiro.

Systematic treatment of American Caecilians since 1895 has been based almost entirely upon the work of Boulenger and upon the collections of the British Museum. This institution contained, in 1929, 103 American Caecilians (28 species, 6 genera, and the types of 15 described forms). While it is the best single collection, it is far from complete.

My present treatment is based on the examination of 850 American Caecilians (44 species, 6 genera, the types of 39 described forms, and the types of nine forms thought to be new). I have not been able to examine the types of 14 described forms. I consider one of these valid and can place it in its genus. I suspect that another may be valid but as I cannot place it in any known genus it must remain incerta sedis. I therefore recognize 6 genera, and 44 species, of which I have seen specimens of all but one species.

genus	specimens	types seen	types not seen	species
Rhinatrema	19	$3+2$ new	1	6
Gymnopis	157	11	2	11
Siphonops	253	4	5	5
Caecilia	324	$15+7$ new	2	16
Chthonerpeton	39	2	1	3
Typhlonectes	58	4	$\frac{2}{13}$	$\underline{3}$
	$\mathbf{S 5 0}$	$39+9$ new	13	44

The type of Siphonops syntremus Cope is another I have not been able to examine, but I cannot place it in any known American genus or species.

[^0]
Distribution

American Caecilians range from latitude 20 north (Vera Cruz and Guerrero in Mexico) to latitude 35 south (Buenos Aires, Argentina) on the Atlantic side, and to latjtude 3 south (Guayaquil, Ecuador) on the Pacific side. They range from sea level to 4500 feet (Cartago, Costa Rica) and to 6200 feet (Milligalli, Ecuador).

They occur on the following islands: Saboga and San Miguel in the Gulf of Panamá; Gorgona off the Pacific coast of Colombia; Trinidad; Victoria and São Sebastião off the coast of São Paulo, Brazil.

Mexico to Costa Rica inclusive have only the genus Gymnopis. Bolivia and Paraguay have only Siphonops. Argentina and Uruguay have only Chthonerpeton. Panamá has Gymnopis and Caecilia. Colombia has 5 genera and 18 species; Ecuador, 4 genera and 11 species; Peru, 4 genera and S species; the Guianas, 5 genera and S species; Brazil, 4 genera and 13 species.

Gymnopis and Siphonops form a pair of allied genera, the former northern, the latter southern. Typhlonectes and Chthonerpeton form another such pair of genera, the former northern, the latter southern.

Rhinatrema and Caecilia occupy the center of the group range, northwestern South America, which is also the area of greatest abundance of genera and species.

There would seem to be a minor center of development in the south (Chthonerpeton and Siphonops) and perhaps another in Central America (Gymnopis).

It may be inferred from the distribution that Caecilians have inhabited South America since preTertiary times, and that they have only entered North America since the midTertiary. Only two genera reach Panamá, only one reaches Costa Rica, and the northern limit is 15 degrees of latitude short of the southern limit.

Generic assignments and affinities

A primitive Caecilian should, theoretically, have the following characteristics:

1. A definite tail.
2. Secondaries all complete and equal in number to the primaries.
3. Two complete rings of scales to each segment, one for the primary and one for the secondary.
4. Inner mandibular tooth row well developed.

5 . Teeth of any given row uniform in size.
6. Tentacular aperture close to eye.
7. Eye well developed and in an open orbit.
S. Body approximately cylindrical, short and fairly stout, without dorsal fin.
9. Anus not surrounded by a sucking disk.
10. Oviparous.
11. Aquatic larvae, gill slit open.
12. Jaw muscles not roofed by bony contact between parietal and squamosal.
13. Skull with more rather than fewer separate bones.

The specimens here assigned to the genus Rhinatrema agree in all respects with the above criteria. Specimens assigned to other genera differ more or less, and are presumably less primitive.

Specimens assigned to the genus Gymnopis have no tail; the secondaries are less in number than the primaries and are not all complete; scales are absent anteriorly; the inner mandibular tooth row is poorly developed or absent; the tentacular aperture may be some distance anterior to the eye; the eve is, in some species, invisible, and the orbit is sometimes roofed over by bone; they are siviparous and have no aquatic larval stage.

Specimens assigned to the genus Siphonops agree on the whole with Gymnopis but lack secondaries and scales completely; the animals are oriparous; but there is not known to be an aquatic larval stage. These are all the differences I can find between such species as Gymnopis mexicamus and Siphonops ammulatus. A common ancestor for these two genera may be inferred to have existed, with the secondaries and scales of Gymnopis and the breeding habits of Siphonops, and thus closer to Rhinatrema than either of the two.

The species assigned to Chthonerpeton have no tail; they lack secondaries and scales entirely; the tentacular aperture is always some distance anterior to the eye and may be just behind the nostril; the anus is surrounded by a sucking disk; the animals are riviparous and the embryos have a single pair of large allantoic gills; it may be inferred that an aquatic larval stage is absent.

The species assigned to Typhlonectes agree on the whole with Chthonerpeton, but the tentacular aperture is always just behind the nostril; the body is flattened laterally, with a dorsal fin. These are all the differences I can find between such species as Chthonerpeton indistinctum and Typhlonectes compressicauda. Chthonerpeton may be inferred to be ancestral to Typhlonectes.

These two genera agree with Rhinatrema in having a well developed inner mandibular tooth row.

The species assigned to Caecilia have no tail; the secondaries are reduced in number and sometimes entirely absent; scalation is reduced or entirely absent; the inner mandibular tooth row is reduced or absent; the tentacular aperture is remote from the eye, being under the tip of the snout, below and somewhat posterior to the nostril; the eye may be invisible and the orbit roofed by bone; the body may be excessively attenuated; the animals may be inferred to be oviparous, with an aquatic larval stage.

There are thus the following groups of genera in America: Rhinatrema; Gymnopis and its ally Siphonops; Chthonerpeton and its derivative Typhlonectes; Caecilia. Of these four groups, Rhinatrema occupies an isolated and a primitive position. The other three exhibit characters which preclude any linear arrangements of them. It is not impossible that each has been derived independently from a more primitive common ancestor. There is nothing known to prevent this common ancestor from laving the characters of Rhinatrema.

The species here assigned to Caecilia have been listed as three genera; Amphiumophis, Herpele, and Caecilia. The unique type specimen of A mphiumophis is a Caccilia tentaculata. The only differentiating character given for the genus was the absence of the inner mandibular tooth row, which is poorly developed in some Caecilia. The roofed orbit and invisible eye of C. ochrocephala and C. poly=ona have caused their reference to Herpele, but the eve is frequently invisible in other species of Caecilia, and ochrocephala and polyzona are so similar to the other forms of Caecilia that I cannot but regard them as congeneric.

The species here assigned to Gymnopis are usually listed as two genera; Gymnopis and Dermophis. The only difference given is the roofed orbit and invisible eye of Gymnopis. The variability and uncertainty of this condition in Gymmopis multiplicata oaxacae and in Gymnopis nicefori make a generic division of the species impractical.

I gather from the literature that four genera and six species occur in Southeast Asia; one genus with six species in the Seychelles Islands; six genera and 17 species in tropical Africa.

The degree of affinity between Rhinatrema and the genera Ichthyophis and Uraeotyphlus of southeastern Asia remains to be determined. Statements in literature would seem to indicate a fairly close relationship.

Parker (1941, Ann. Mag. Nat. Hist. (11), 7 pp. 1-17), has shown
that African and Seychelles Islands forms, formerly referred to Dermophis [$=$ Gymnopis of this paper] are not congeneric with American species.

The African Herpele squalostoma, the type of Herpele, is not congeneric with any American form, although two have been referred to Herpele from time to time. The American forms in question are Caecilia. Whether or not the Indian "Herpele" fulleri is congeneric with either remains to be determined.

As matters stand it is not safe to consider that any genus of American Caecilians has representatives in the Old World, or, indeed, that any genus of Caecilians occurs in more than one of the four areas (southeast Asia, Seychelles Islands, African tropics, American tropics) inhabited by these animals.

The eye

Normally and primitively the eye is in an open orbit and visible through the skin. At the opposite extreme the orbit may be closed over by bone, and the eye may be invisible. In some forms the orbit may be open but the eye may be concealed by the thickness or the opacity of the skin. It is also possible that the eve may remain visible externally even after the orbit is roofed by bone. In many forms, known only from a few rare or unique specimens which it is not possible to dissect, the exact condition of the eye is not yet known. It is therefore often impossible to say more than that the eye is or is not visible externally.

It is so visible in all Rhinatrema, Chthonerpeton, and Typhlonectes, and the orbit is not known to be roofed over in any of these.

In Siphonops the orbit is not known to be roofed over in any form, but the eye is invisible externally in half the S. insulanus seen. Of 21 S. brasiliensis seen the eye is very indistinct in one and invisible in four.

In Gymnopis the eve is invisible externally in all unicolor, oligozona and multiplicata multiplicata seen. The orbit is known to be roofed by bone in some specimens of unicolor and multiplicata multiplicata. In nicefor the eye is invisible in 4 specimens out of 6 . In one of these four the orbit is not roofed by bone. In multiplicata proxima the eye is visible externally in a single specimen (of 38 examined), and in this one the orbit is open. The eye is visible in 13 out of 15 multiplicata oaxacae, but the condition of the orbit is not known. In other forms of Gymnopis the eye is always visible and the orbit is not known to be roofed over.

In Caecilia the eye is invisible externally in all known specimens of ochrocephala, polyzona, and elongata. The orbit is known to be roofed over in some ochrocephala. In the following species the eye is occasionally invisible externally; gracilis, one of 31 ; dumin, one of 19 ; thompsoni, one of 9 ; tentaculata, three of 26 ; bassleri, three of twelve. The orbit was open in the specimen of gracilis.

The eye is always visible in the other forms of Caecilia, and the orbit is not known to be roofed over in any of them.

Cranial characters

I have examined specimens of Rhinatrema bi-color, Gymnopis mexicanus mexicanus (2), Gymnopis unicolor, Siphonops amnulatus, Siphonops brasiliensis, Caccilia ochrocephala, Chthonerpeton indistinctum, Typhlonectes compressicauda natans, Typhloncetes kaupii.

The cranial characters confirm the position of Rhinatrema as primitive; the alliance between Gymmopis and Siphonops; the alliance between Chthonerpeton and Typhlonectes.

Rhinatrema bicolor has the premaxillae separate from the nasals. In the other genera the premaxilla and nasal are fused. Rhinatrema bicolor has a large flat bone posterior to the combined maxilla-palatine. What is obviously the same bone (but smaller) can be found in Gymnopis and in Siphonops. No such bone exists in Caecilia, Chthonerpeton, or Typhlonectes. This bone has the relationships of an ectopterygoid more than that of a pterygoid. In the literature it has gone by both names. I think that some Caecilians have an ectopterygoid, thus differing from all other living Amphibians, and that no Caecilians have a pterygoid. There has been much confusion in literature, because a forward extension of the quadrate (coössified in cartilage) has been called a "pterygoid bone" by many investigators.

In Rhinatrema, in Gymuopis, and in Siphonops the internal naris is enclosed by the maxilla-palatine. In Caecilia, Chthonerpeton, and Typhlonectes the internal naris is enclosed on the outer side by the maxilla-palatine and on the inner by the prevomer.

The frontals are in contact in Rhinatrema, in Gymnopis, in Chthonerpeton, and in Typhlonectes. They are separated by the "ethmoid" in Siphonops and in Caecilia. The former condition would seem primitive.

In Rhinatrema, in Chthonerpeton, and in Typhlonectes there is a wide gap between the squamosal and the parietal, and the temporal muscles are not covered by bone. In Gymnopis, Siphonops, and

Caecilia squamosal and parietal are in contact, and the temporal muscles are roofed by bone. The former condition would appear to be primitive.

The three genera with a gap between squamosal and parietal have markedly "kinetic" skulls, with considerable movement between the "maxillary segment" and the "occipital segment." They are "monimostylic" as the quadrate is firmly attached to the squamosal. The three genera without a gap between squamosal and parietal have much less movement between the segiments of the skull, and are less "kinetic" but are just as much "monimostylic." The former condition would appear to be primitive.

On these characters, Rhinatrema is alone. Its skull characters, as well as its other characters, seem to me to be primitive.

Gymnopis differs in skull characters from Siphonops only in having the frontals in contact, in which trait as in its other characters it seems to me to be more primitive.

Chthonerpeton and Typhlonectes agree in all significant cranial characters.

Caecilia stands alone, and is the most specialized of the genera in cranial characters.

The cranial characters of American Caecilians align them in relation to each other in the same way and the same order as do their other characters.

While I am quite aware of previous remarks on the cranial characters of American Caecilians, and aware that the above remarks disagree with some of them, I offer no apologies. The statements given above result from examination of all the American genera at the same time, and consequent comparison of one with another. All the statements are from my own observations and none are from any other sources.

The tentacle

Statements in the literature give the impression that the tentacle of American Caecilians is present in two quite different conditions: a valvular or flap-shaped tentacle, in a horseshoe-shaped groove or aperture, attached posteriorly to the skin of the head; a globular tentacle in a circular aperture or groore. This is erroneous, as all American Caecilians have a quite similar tentacle and aperture, all of the first type. In American Caecilians the second type is an occasional consequence of unusual retraction of the organ, and careful observation will disclose the posterior attachment. This occurs more often in
specimens of Gymnopis. The two appearances may be present on opposite sides of the same individual. The tentacular aperture is the posterior end of the naso-lachrymal duct.

The anatomical base of the tentacle is, in all forms, the anterior border of the eye socket, and this is also the place of origin of the organ embryologically. It may therefore be inferred that the original position of the aperture was on the side of the head, just anterior to the eye. This is the position in all Rhinatrema and in most forms of Gymnopis and Siphonops. In the races of G. mexicanus, in G. albiceps and in G. parviceps the aperture is further forward, but nearer the eye than the nostril. In a single specimen of G. m. mexicanus (of 66 examined) the aperture is exactly equidistant between nostril and eye. In 8 specimens of Siphonops anmulatus (of 175 examined) the aperture is further forward, in one nearer the nostril than the eye.

In Chthonerpeton the aperture is, in viviparum, slightly nearer the eye than the nostril; in indistinctum it is slightly nearer the nostril than the eye; in petersi and in all forms of Typhlonectes it is directly behind the nostril.

In all forms of Caecilia the aperture is on the under side of the snout, below and slightly posterior to the nostril.

The vent

The vent is an unmodified opening except in Chthonerpeton and in Typhlonectes, where the area surrounding it becomes modified into a sucking disk. Every stage in this transition may be seen in the three species of Chthonerpeton. The disk is slightly developed in C. viviparum, intermediate in C. petersi, and large in C. indistinctum and in all Typhlonectes.

Sex

American Caecilians have no external signs by which they may be sexed. Males have a median intromittent organ, which is occasionally extruded, perhaps during the death throes. Pregnant females of viviparous species are quite stout, and may have the hinder portion of the body enlarged. It is usually necessary to dissect in order to determine the sex. No variation in number of segments, of secondaries, or of scale rings has so far been found correlated with sex.

Annular grooves

In all American Caecilians the muscle segmentation is marked externally by grooves, the "primaries." These correspond in position to the ends of ribs and therefore to vertebrae. A count of them gives the number of vertebrae. They are precisely identical to the "costal grooves" of salamanders. They may extend completely around the body, but are frequently incomplete dorsally and, less often, ventrally.

In American Caecilians the number of these primary grooves ranges from 76 (in Chthonerpeton indistinctum) to 285 (in Caecilia bassleri). The range $76-166$ covers all specimens of Gymnopis, Siphonops, Chthonerpeton, and Typhlonectes. Rhinatrema has 10S-198 primaries, and Caecilia has 110-285.

Individual variation is, of course, greater in forms with a high count. No age variation appears or is to be expected. No sexual variation has been discovered.

In Rhinatrema, in Gymnopis, and in most Caecilia, some or all of the segments are partly or completely divided by secondary grooves in the middle of the segment. In Rhinatrema these are present and complete in each segment, and it is impossible, without dissection, to distinguish between primary and secondary grooves. In this genus the number of vertebrae equals half the number of superficial rings. In Gymnopis and in Caecilia the secondaries are absent from the more anterior segments. In these two genera the secondary rings appear at first anteriorly as two unconnected grooves, between the primaries, and parallel to them, in the dorsolateral area. The first appearance is often asymetrical. They increase in length in the more posterior segments, the two join first dorsally, and then, towards the posterior end, ventrally. At the hind end they are exactly like the primaries, but as they rapidly become incomplete anteriorly on the under side it is not hard to make a separate count of the two sets. It is extremely important in these two genera to keep the primary and secondary counts separate.

These secondary grooves are an outward and visible sign of the presence of bony scales in the anterior half of the segment. The secondary counts given in this paper are all taken by beginning with the first incomplete (dorso-lateral) secondary groove to appear, and counting all the segments posterior to it.

Secondary grooves are present in all species of Rhinatrema (equal in number to the primaries and all complete); all species of Gymnopis (from a minimum of 10 anterior segments without them in G. multi-
plicata oaxacue to a maximum of 57 in G. nicefori; a maximum count of 121 in G. multiplicata oaxacae, a minimum of 13 in G. parviceps; anterior secondaries always incomplete, maximum complete 67 in G. niccfori); most species of Caecilia (from a minimum of 55 anterior segments without them in C. dumni to a maximum of 268 in C. bassleri; a maximum count of 94 in C. armata; anterior secondaries always incomplete, maximum complete 26 in C. dumni).

Secondary grooves are present or absent in two species of Caecilia (C. guntheri, S-0); C. Jachynema, 11-0).

Secondary grooves are unknown in three species of Caecilia (C. caribea, C. degencrata, C. clongata) in all species of Siphonops, of Chthonerpeton, and of Typhlonectes.

The individual variation in number of secondaries, and in number of complete secondaries, shows no correlation with age or sex.

Scalation

Bony eycloid seales are concealed beneath the skin anterior to both primary and secondary grooves in all Rhinatrema, all Gymnopis, and in most Caecilia. They are absent in all siphonops, in all Chthonerpeton, and in all Typhlonectes. They invariably accompany secondary grooves. In Gymnopis and in Caecilia the first secondary conceals a single scale. A complete secondary conceals a complete ring of scales. Wherever secondaries are present there are scales present anterior to the primaries. They appear first in the dorsolateral area and extend further dorsally and ventrally as one passes back along the body. At the hind end each segment contains two complete rings of bony scales. In Rhinatrema, every segment of the body contains two complete rings of scales.

In some (but not in all) specimens of Caecilia without secondaries scales may be found in connection with the hindmost primaries. Ordinarily, lack of secondaries indicates lack of scales; presence of secondaries alucays indicates presence of scales.

Nierlen (1913, Gymnophiona, p. 2) says: "scales . . are in most genera restricted to the back (only Ichthyophis and Herpele have scales on the belly also) and are besides arranged in many rows in the hinder half only of each of the epidermal folds limited by two circular grooves." As may be seen from the foregoing remarks, none of the statements made by Nieden are correct. Scales are on the belly in Rhinatrema, Gymnopis, and Caecilia; there are never more than two rows or rings to a segment; they are usually in both halves of a segment.

The statement about "many rows" is obviously reached by examination of microscopic sections, as the scales of any one ring overlap each other considerably. There is no overlapping of the scales of one ring by those of another. My statements concerning scalation are derived from examining the scales in situ on the animals.

Dentition

American Caecilians bear teeth on the premaxillary and maxillary bones as an outer, upper row; on the prevomers and palatines as an inner, upper row; on the dentaries as an outer, lower row. An inner, lower row, sometimes present, has been considered splenial.

At one extreme of American variation the teeth are all similar, and relatively numerous in all rows. It is legitimate to infer that this is the primitive condition.

At the other extreme the teeth of the premaxilla-maxilla set and of the dentary set are progressively enlarged anteriorly into big hooked fangs, and are reduced in number. The inner mandibular row may be entirely absent. This condition is probably secondary:

The species of Rhinatrema, Chthonerpeton, and Typhlonectes have the presumably primitive condition, and no generic distinctions in dentition have been observed.

In Gymnopis and in Siphonops the teeth on the lower jaw are uniform but larger than those on the upper. The inner mandibular row is reduced to one tooth on a side (in oligozona and in multiplicata) or is entirely absent.

In Caecilia the anterior teeth on the lower jaw are much enlarged and sharply pointed; to a less degree this is true of the maxillary teeth. The inner mandibular row may consist of as many as four teeth on a side (five or six were reported for the types of polyzona); they may be reduced to one on a side or may be entirely absent.

Accurate counts of the number of teeth in any given row are well nigh impossible to make unless the specimen is stained and cleared, or unless it is made into a skull. Either of these two operations enables one to count the teeth and the sockets, and this arrive at an accurate statement of the total dentition. Such treatment is obviously impossible for most of the specimens. I am profoundly skeptical of dental characters in these animals as a basis for specific discrimination, having found considerable variation in count between the two sides of the same individual in skulls and in cleared specimens.

The presence of enlarged, sharply pointed, anterior teeth in all

American Caecilians with the tentacular aperture under the nostril (and only in these) tends to establish the genus Caecilia as here treated.

The great reduction or absence of the inner mandibular row in the species here considered Gymnopis and Siphonops (in connection with other characters) confirms their alliance.

Chthonerpeton viviparum (with 3-4 teeth in the inner mandibular row), and Siphonops brasiliensis (with none), are otherwise so similar that they have been confused. Aside from this I know of no case where it is necessary to examine dentition in order to arrive at specific or generic identification, and it is not absolutely necessary even in this case.

Dimensions

The smallest individual seen is a specimen of Gymnopis nicefori 100 mm . long. Perfectly formed young 76 mm . long have been taken from the oviduct of a pregnant Gymmopis parviceps. The smallest species are: Siphonops hardyi (nine specimens with a maximum length of 178 mm .) and Gymnopis parviceps (a single pregnant female 180 mm . long).

Eleven species (5 Rhinatrema, 2 Siphonops, 4 Gymnopis) have their maximum recorded lengths under 251 mm . The maximum length recorded outside the genus Caecilia is 695 mm . Six species of Caecilia exceed this length, and three (tentaculata 1075 mm ., abitaguae 1200 , thompsoni 1375) exceed a meter. The maximum length attained by Caecilians in the Old World is 500 mm .

A diameter of 30 mm . is attained by Gymnopis m. mexicana, by Caecilia tentaculata, and by Typhlonectcs comprcssicauda natans.

If Caecilians were represented in collections only by specimens ideally collected and preserved, accurate measurements of length and of diameter could be taken with little difficulty, and the ratio of length to diameter would be very reliable. Actually, specimens have to be measured in every conceivable state of preservation and distortion. There is wide discrepancy in the length measurement of a number of specimens as taken by different observers, it is impossible to a void a possible error of as much as a millimeter in diameter measurements, and $1 / d$ ratios presented here are in no case carried into decimals, and in most cases give a range of variation which exceeds that of the animals in life.

Stout species are often slimmer when young and vice versa. Many seem to retain the same proportions throughout life.

A small Typhlonectes c. compressicaudus has an $1 / \mathrm{d}$ ratio of 12, and a pregnant female Gymnopis m. mexicanus one of 14. No Rhinatrema seen has an $1 / d$ ratio of over 30 . Outside of Caecilia the slimmest specimen seen is a Gymnopis nicefori with a ratio of 67 . Seren species of Caecilia may be more attenuate than this, and Caccilia bassleri may be 160 times as long as wide.

The most elongate forms have the most vertebrae, but otherwise there is not too much correlation, and there is a wide range of vertebral count among equally stout forms.

The body is roughly cylindrical in most forms, and the diameter is the same from neck to vent. This statement is not true for Typhlonectes, which is compressed laterally, and has the posterior part of the body much deeper than the anterior. In this genus there is also a dermal dorsal fin fold, restricted to the posterior third in compressicauda and extending nearly to the head in kaupii.

In Rhinatrema there is a tail. In other genera the body ends bluntly just behind the vent.

Coloration

The majority of the forms have no definite markings, being dull blackish above, somewhat lighter below. The head is usually somewhat lighter than the dorsal surface, and the anal region is usually whitish.

The rentral surface is much lighter than the dorsal surface in some Gymnopis, and spotted or mottled with white in some Caecilia.

The primary grooves are white in two species of Siphonops (amulatus and paulensis), in marked contrast to the dark background of the segmental folds which they delimit. The reverse of this is seen in some Caecilia (principally ochroccphala and polyzona). In these the grooves are black and the folds are of a lighter color.

Yellow spots, one on each side on the segmental folds, are quite usual in Caecilia pachynema, and occur sporadically in a few other species of Caecilia.

Vivid yellow lateral stripes, one on each side, from jaw to vent, are present in three species of Rhinatrema (bivitatum, parkeri, and bicolor).

Habitat and habits

Something about the habitat may be inferred from the range given for a species. I have included the few ecological notes under the specific headings.

The climatic and botanic areas inhabited are: tropical rain forest; tropical deciduous forest; tropical savanna; temperate forest; temperate savanna. In North America the only temperate areas inhabited are montane cloud forest; it is probable that the animals occur in savanna only in galeria forest along rivers.

Except for the aquatic, river-dwelling Typhlonectes it is probable that all are terrestrial and burrowing. I have seen only three forms (Gymmopis multiplicata proxima, Gymnopis parviceps, and Caccilia ochrocephala) alive in the field, and the literature is singularly uninformative.

The animals are unquestionably carnivorous, but the precise aliment is not known.

Notes in literature indicate that they are preyed on by snakes; Ninia atratn, Pscudoboa clelia, Sordellina brandonjonesi, and several species of Micrurus being mentioned.

Males have a median intromittent organ and fertilization is presumably internal.

Published observations would indicate that Rhinatrema and Siphonops are oviparous, and that Gymnopis, Chthonerpeton, and Typhlonectes are viviparous. The behavior of Caecilia is not positively known, but as no embryos have been found in females it is probably oviparous.

External gills have only once been reported for larvae (Rhinatrema. They have been reported for embryos in the eggs of Rhinatrema, and of Siphonops, and for embryos in the oviducts of Chthonerpeton and Typhlonectes. They have been reperted absent in embryos in the oviducts of Gymnopis. In Rhinatrema these gills are in three pairs, the two anterior fimbriated, but with rather few filaments. The gills of Siphonops are similar but the posterior may be absent.

The gills of Chthonerpeton and of Typhlonectes are a single pair of large, flat, leaf-like structures. It is probable that these are entirely embryonic, and that the one case of birth with persistent gills was premature.

Free living (? aquatic) larvae without gills, but with a single pair of gill slits have been noted in Rhinatrema and in Caecilia. Well formed embryos in the oviducts of Gymnopis do not have gill slits. Normally born young of Typhlonectes lack gill slits, and gill slits were not reported for embryos of Chthonerpeton or of Typhlonectes, although external gills were present.

Gymnopis, Chthonerpeton, and Typhlonectes normally give birth to small replicas of the adult. Rhinatrema has a larval stage, which
is presumably aquatic, and which emerges from eggs laid by the mother. Siphonops lays eggs, but whether there is a larval stage is not known. Caecilia was reported long ago to have a larval stage. It is not certain that this is correct. It is not certain, but it is probable, that Caecilia lays eggs. It is peculiar that less is known of the breeding habits of Caecilia than of the other five genera, since specimens of Caecilia make up nearly 40% of those in collections.

Acknowledgments

I wish first of all to express my gratitude to the John Simon Guggenheim Memorial Foundation, as a Fellow of which I was enabled to examine material in the Old World; and to the authorities of the British Museum of Natural History, of the Museum of the Jardin des Plantes in Paris; of the Senckenberg Museum in Frankfort; of the Museums of Berlin, Dresden, Munich, and Vienna; and of the Jagellonian University in Krakau, for the privilege of examining their specimens.

I am indebted to the authorities of the following institutions in the United States for the same privilege: Museum of Comparative Zoölogy; Smith College; American Museum of Natural History; Academy of Natural Sciences in Philadelphia; Carnegie Museum; National Museum; Museum of Zoology of the University of Michigan; Field Museum; Museum of Leland Stanford Cniversity; California Academy of Science.

Dr. Harvey Bassler sent me his Peruvian collection of 31 specimens, including 4 genera and 6 species, probably the best lot ever gathered by one man. He has my especial thanks. Dr. E. H. Taylor sent me two Mexican specimens from his private collection for identification.

I have seen a specimen from the Museo Nacional of Salvador.
To my friend Prof. Juvenal Valerio, Director of the Museo Nacional of Costa Rica, I am indebted for the privilege of examining the specimens in that collection, and those of the Seminario de San Jose and of the Collegio de San Luis Gonzaga in Cartago. I am also indebted to Dr. Picado and Prof. Manuel Valerio of San Jose, and to Prof. Torres of Cartago for additional Costa Rican material.

Mr. Lindsay, of the Summit Gardens in the Canal Zone, let meexamine a specimen he had, and the authorities of the Collegio La Salle, in Panamá City, showed me their specimens. Mr. James Zetek, of Balboa, has passed over to me a number of Canal Zone specimens.

Hermano Niceforo Maria, of the Instituto La Salle in Bogotá, Colombia, has forwarded me a number of Colombian specimens.

My friend, Dr. Afranio Amaral, sent me the collection of the Museu Paulista in São Paulo, Brazil.

I was sent for identification most of those in the Museu Nacional.
I wish to express my thanks to all these individuals and to the authorities of all these institutions.

Mr. H. W. Parker, of the British Museum of Natural History, Mr. Arthur Loveridge, of the Museum of Comparative Zoölogy, and Mr. Charles Bogert, of the American Museum of Natural History, have been extremely courteous and kind to me in the course of this work.

Dr. Leonhard Stejneger, of the C'nited States National Museum, has, as usual, given me good advice on nomenclatorial problems.

No single museum has anything like a complete set of the forms of American Caecilians (6 genera, 44 forms). The three best are: British Museum (6 genera, 2 S forms); American Museum (6 genera, 25 forms); Museum of Comparative Zoölogy (5 genera, 22 forms). These three collections together contain 38 forms, lacking only Rhinatrema bivitatum, Rhinatrema colombianum, Siphonops insnlanus, Caccilia subnigricans, Caccilia abitaguae, and Caccilia armata.

Seven forms are not represented by specimens in any museum in this country (Rhinatrema bicitatum, R. columbianum, R. parkeri, Sifhonols insulanus, Caccilia gïnthrri, C. armata, Chthonerpeton petersi).

Identification and methods

Measurements are given in millimeters. In Rhinatrema body length is from tip of suout to posterior end of anus; tail length is from latter point to tip of tail. In other genera only total length is given.

Primaries are counted first, then secondaries, then number of complete secondaries. It is sometimes easier, and just as accurate, to count the primaries down to the first secondary, and get the number of secondaries by subtracting this count from the total number. of primaries. The foremost secondary is to be found in the dorso-lateral area, sometimes isolated from its successors. The primary and secondary counts must be kept separate.

The position of the tentacle should be noted.
Tentacle position, primary and secondary count, and $1 / \mathrm{d}$ ratio will ordinarily serve to identify any American Caecilian. It may sometimes be necessary to examine the dentition. In Caecilia attention should be paid to color and condition of eve and geographical probability.

The inner mandibular teeth, if present, are barely anterior to the edge of the tongue, the anterior teeth of the two rows close together. They are usually rather concealed in the gums, and their tips are on quite a different level from those in the outer mandibular row, so that it is not hard to overlook them.

Most descriptions of Caecilians in literature are much too long, repeating for the individual or for the species statements true of every member of the genus. This serves no useful purpose and may be confusing.

In cross-section the animals (except for the laterally compressed Typhlonectes) are circular when alive. Various preservatives and death throes may cause muscular contractions which materially alter this. Most prominent of these is contraction of the obliquus externus muscle, which makes a more or less marked dorso-lateral fold appear. This has fortunately not caused any difficulty in America, but one Old World form has been described as a new species on this basis, the fold being imagined to be "glandular".

The synonymies give, I hope, most of the papers with information on range, habits, relationships, and systematic treatment of each species. No attempt whatever has been made to include the multifarious references in anatomical papers to a few of the species, principally to Siphonops ammulatus. Nuch of this material may be found in the bibliography given by the Sarasins (1890, Erg. nat. Forsch. Ceylon, 2, pts. 3-4) and in Werner's compilation (1931, in Kukenthal, Handb. Zool. 6, 2, pp. 143-20S, ff. 231-338, bibliography). The latter work is extremely good and useful, but the systematic section extends only as far as genera, and is taken from Nieden (1913, Die Gymnophiona, section 37 of Das Tierreich), and Nieden's work, while the latest treatment of the Caecilians of the world, extending down to species, is compilation pure and simple.

Key to gencra of American Caecilians

A. Secondaries as numerous as primaries; a tail (tentacle immediately anterior to eye; teeth uniform, inner row of mandibular teeth well developed)

Rhinatrema (p. 456)
AA. Secondaries (if present) not as numerous as primarics; no tail.
B. Tentacle under nostril, under tip of snout (anterior maxillary and outer mandibular teeth enlarged and pointed; inner mandibular row well developed to absent; secondaries from half as numerous as primaries to entirely absent; scales present or absent).......................... Caecilia (p. 494)

BB. Tentacle on side of head.
C. Secondaries present (teeth of a row uniform, maxillary teeth smaller than outer mandibular; inner mandibular row one tooth or absent; tentacle nearer eye than nostril)

Gymnopis (p. 461)
CC. No secondaries (no scales).
D. No dorsal fin.
E. Tentacle nearer eye than nostril; no inner mandibular tooth row; primaries mostly complete; no anal disk Siphonops (p. 479)
EE. Tentacle usually nearer nostril than eye; inner mandibular tooth row well developed; primaries usually incomplete dorsally; an anal disk. . Chthonerpeton (p. 527)
DD. A dorsal fin (tentacle close to nostril; inner mandibular tooth row well developed; primaries incomplete dorsally; an anal disk)

Typhlonectes (p. 532)
This key may not serve to separate all specimens of Siphonops from Chthonerpeton (especially S. brasilicnsis and C. viviparum). It would be advisable to consult the specific descriptions in the case of specimens from Southeastern Brazil.
"Siphonops syntremus" of Cope, from Northern Central America, was said to have: secondaries not so numerous as primaries; a tail; tentacle on side of head just posterior to nostril; mandibular teeth large and few. The unique type is lost. This combination of characters is otherwise unknown.

Rhinatrema Duméril and Bibron

1841. Rhinatrema Duméril and Bibron, Erpét. Gen. 8, p. 288 (monotype Caccilia bivitata Cuvier).
1842. Epicrionops Boulenger, Ann. Mag. Nat. Hist. (5), 11, p. 202 (monotype E. bicolor Boulenger).
Diagnosis. Caecilians with a distinct pointed and flattened tail; primaries 108-198 on body; secondaries as numerous as primaries, all complete; body and tail with two complete rings of bony scales in each segment; 1/d 20-30; tentacle in horseshoe-shaped groove, immediately anterior to eye and very small; eyes visible; teeth of any row uniform; inner mandibular tooth row well developed; length $145-370 \mathrm{~mm}$.; six forms.

Range. Colombia, Ecuador and Peru. The Guianas. Sea level (?) to 3900 feet elevation.

Kry to forms of Rhinatrema

A. Tail very short, much less than 5 mm . long; (striped; primaries 167-181; Guiana)....................... . . bivitatum AA. Tail S-20 mm. long; tail segments $5-25$.
B. Primaries on body 198; striped; Colombia parkeri

BB. Primaries on body 191; uniform; Guiana.......... nigrum
BBB. Primaries on body 140-175; uniform; Peru... perurianum
BBBB3. Primaries on body 117-135; striped; Ecuador and Peru.
bicolor
BBBBB. Primaries on body 108; uniform; Colombia. .columbianum
Remarls. I keep all these forms in the original genus Rhinatrema in spite of the fact that there is an obvious dichotomy between the type of Rhinatrema with scarcely any tail, and the other forms (including the type of Epicrionops) which have a well developed tail. Young specimens are difficult to count with accuracy, and sometimes seem to differ in color from adults (cf. uniform young from the type locality of parkcri, and uniform young from an area inhabited only by the striped bicolor). I have seen 19 specimens and know of three that I have not seen. I have examined the types of all the species with the exception of columbianum.

Rhinatrema bivitatum (Cuvier)

1829 Caccilia biritata Cuvier, Regne Animal, (2), 2, p. 100; Guérin-Méneville 1829-1838, Iconogr. Regne Animal, 3, Rept., pl. 25, f. 2.
1831. Caccilia bivittata Gray, in Griffith's Cuvier's Animal Kingdom 9, app., p. 110.
1841. Rhinatrema bivittatum Duméril and Bibron, Erpét, Gen. 8, p. 288, pl. 85, f. 4; Duméril 1863, Mem. Soc. Cherbourg 9, pl. 1, f. 5, 12; Vaillant 1895, CR. Acad. Sci. 120, p. 460; Boulenger 1895, Proc. Zool. Soc. London, p. 407; Nieden 1913, Gymnophiona, p. 14.
1879 Ichthyophis glutinosus (part), Peters, Mon. Ak. Berlin, p. 928, 931, f. 2.
Type. Paris No. S.
Type locality. Cayenne.
Rangc. French Guiana.
Diagnosis. A striped Rhinatrema, with tail at most 2 mm . long; primaries $167-181$; $1 / \mathrm{d} 24-30 ; 195-300 \mathrm{~mm}$. long.

Description. Nothing can be added to the diagnosis.
Remarlis. This species was originally of rather uncertain locality,
and was confused with Ichthyophis glutinosus of southeastern Asia in the literature. The type is fortunately preserved and shows that this confusion was baseless. As the first known species of the most primitive American genus, the confusion with the most primitive Old World genus is not incomprehensible.

Slecimens scen. 3 as follows:

		prim.	length	length of tail	diam.	1/d
Cayenne,	Paris S	181	210		7	30
Guiana,	Paris Sa	167	195	2	S	24
São Paulo	Hamburg 5268	169	300		10	30

N.B. Quite likely São Paulo is an erroneous locality:

Rhinatrema parkeri spec. nov.
Type. BХГNH 97-11-12, 23.
Type locality. Medellin, Colombia.
Range. Known only from type locality.
Diagnosis. A striped Rhinatrema with well developed tail (10 mm .); body primaries 19S; 1/d 26.5; 212 mm . long.

Description. The type has two light stripes; 19S primaries on body and 12 on tail; total length 212 mm ., tail 10 mm .; diameter S mm .

Remarks. The type has more body primaries than any other Rhinatrema examined, the nearest approaches being made by the striped bivitatum of Guiana (181) which has a very short tail; the uniform nigrum of Guiana (191); the uniform perwianum of Peru (175). The other species known from Colombia, columbianum from the Province of Cauca, is uniform and has only 10 S body primaries.

A larval Rhinatrema from Medellin, AMNH 1350, may possibly belong to this species. It is not in the best of condition and I cannot count its annuli. It is uniform black; has one gill slit but no external gills; length 162 mm ., tail 10 mm .; diameter Smm .; $1 / \mathrm{d} 20$.

I take great pleasure in naming this form after my friend H.W. Parker, of the British Nuseum of Natural History, to whom I am vastly indebted for help and advice, and to whom all herpetologists are indebted for his papers on Caecilians.

Specimens seen. Two, the type and one larva.
Rhinatrema nigrum spec. nov.
Type. AMNH (specimen mislaid, and number in my notes, 34088, either incorrect or duplicated).

Type locality．Arundabara，British Guiana，elevation 2200 feet．
Range．Known only from type locality．
Diagnosis．Uniformly dark；tail well developed（ 11 mm ．）； 191 body primaries； $1 / \mathrm{d} 23$ ；length 211 mm ．

Description．The type has，in addition to the diagnostic characters， 13 tail primaries；a diameter of 9 mm ．

Remarks．This form differs from parkeri of Colombia，which has a similar segment count（198）in color；it differs from the other Guiana species，bivitatum，in color，in having a well developed tail，and in having ten more body segments；it differs from peruriamum in having sixteen more body segments．

Specimens seen．One，the trpe．

Rhinatrema perctianua Boulenger

1902．Rhinatrema perurianum Boulenger，Ann．Mag．Nat．Hist．（7），10， p．153；Nieden 1913，Gymnophiona，p．15；Noble 1927，Ann．New York Acad．Sci．，p．59，f． 5.

Type．BMINH 1902－．5－29， 207 ．
Type locality．Marcapata Valley，southeastern Peru．
Range．Southeastern Peru．
Diagnosis．A uniformly colored Rhinatrema；tail $17-20 \mathrm{~mm}$ ．long； primaries $140-175$ ； $1 / \mathrm{d} 20-23$ ； $280-370 \mathrm{~mm}$ ．long．

Description．Uniform brown．
Slecimens sern． 4 ，as follows：
Perı：
Marcapata Valley
BMINH 1902－5－29， 207

＂Juliaca，＂AMNH 1454	140	15	320	20	16	20
＂＂AMNH 1457	-	-	65	6.5	3	19
No data，Vienna	152	-	370	20	17	21

Remarks．Noble（1927）has pointed out that this species is ovi－ parous，and has figured an encapsuled embryo，with external gills．

The locality Juliaca is probably erroneous．Dr．Harvey Bassler has suggested that the specimens so labeled，sent by a member of the Inca Mining Co．，came from the vicinity of the mine at Santo Domingo， north of the shipping station of Juliaca，and at about 3000 feet above sea level．

The embryo has branchial structures as described by Parker for bicolor. Its tail has a dorsal and a ventral finfold.

Rhinatrema bicolor (Boulenger)

1883. Epicrionops bicolor Boulenger, Ann. Mag. Nat. Hist. (5), 11, p. 203.
1884. Rhinatrema bicolor Vaillant, C. R. Ac. Sci., 120, p. 461; Boulenger 1895, Proc. Zool. Soc. London, p. 407, pl. 23, f. 2; Nieden 1913, Gymnophiona, p. 15; Parker 1934, Ann. Mag. Nat. Hist. (10), 14, p. 265.

Type. BMNH 7S-1-25, 110.
Type locality. Intac, Ecuador [3900 feet elevation in western Ecuador].

Range. Western Ecuador and the eastern part of Ecuador and of Peru.

Diagnosis. A striped Rhinatrema; with tail S-15 mm. long; primaries $117-135 ; 1 / \mathrm{d} 16-27 ; 145-250 \mathrm{~mm}$. long.

Description. The color of the La Merced specimens was a dark purplish brown; on each side a ventrolateral yellow band from jaw to vent.

Specimens seen; 9, as follows:
body tail tail
Ecuador: prim. prim. length length diam. $1 / \mathrm{d}$

Intac: BMNH 78-1-25, $110 \begin{array}{lllllll}117 & 12 & 205 & 8 & 9 & 25\end{array}$
East Ecuador AMNH

46205	130	10	210	14	13	16

Peru:
La Merced, Chanchamayo Valley, $3000-3500^{\prime}$

ANNH	42858	135	25	241	15	9	27
$" ،$	42859	124	22	194	12	8	24
$"$	42860	124	19	250	14	10	25
$"$	42861	130	22	225	13	9	25

Chanchamayo or Perene

AMNH 17304	118	12	220	13	10	22
$" ،$	17305	119	11	230	13	11
"	17306	128	12	-	-	-

Remarlis. Parker (1934) has recorded a larva, probably of this species, from Zamora, Ecuador (3250 feet, east of the Andes). It had about 135 primaries, uniform body color, length 145 mm ., tail 9 .
"Three pairs of small external gills are persistent, the two anterior pairs fimbriated, with five or six finger-like processes, and the last reduced to a mere knob; ventral to this last is a single oblique slit-like gill-cleft equipped with a large valvular flap on each side and lying in a circular depression."

It would seem that this species occurs on both sides of the Andes. It is thus either able to cross the passes, some of which are fairly low in Ecuador, or, and more probably, it antedates the present elevation of these mountains.

Rhinatrema columbianum Rendahl and Vestergren

1938. Rhinatrema columbianum Rendahl and Vestergren, Arkiv f. zool. 31A, 3, p. 1, ff. 1-3.
Type. Stockholm 19, collected by Kjell von Sneidern.
Type locality. El Tambo, Prov. Cauca, Colombia, about 1000 m . elevation.

Range. Known only from type locality.
Diagnosis. A Rhinatrema without stripes; tail well developed (8.7 mm . long); primaries $108 ; 1 / \mathrm{d} 20$. ; total length 161 mm .

Description. " $227 \ldots$. .skinfolds, of which 11 are on the tail"; 108 primaries and 108 secondaries on body; 5-6 primaries on tail; "greatest body diameter 20.1 times in total length; tail length 18.5 in total length"; black, uniform; anal region whitish; total length 161 mm . The tail length would appear to have been 8.7 mm .; the diameter to have been $S \mathrm{~mm}$.

Remarks. This is the shortest bodied member of the genus. The next shortest, bicolor of Ecuador and Peru, is striped and has 117135 body primaries. The other Colombian species, parkeri, is striped, and is the longest bodied member of the genus, with 198 body primaries.

Granopis Peters

1874. Gymnopis Peters, Mon. Berlin Ak., p. 616 (monotype Gymnopis multiplicata Peters).
1875. Dermophis Peters, Mon. Berlin Ak., pp. 930, 937 (genus based on Siphonops mexicanus Duméril and Bibron and Dermophis brevirostris Peters. Four species inquirenda were also included. Noble designated mexicanus as type in 1924, in Bull, Amer. Mus. Nat. Hist. 49, 11, p. 305).
1876. Cryptopsophis Boulenger, Ann. Mag. Nat. Hist. (5), 12, p. 166 (monotype Cryptopsophis multiplicatus Boulenger).
1877. Gymnophis Barbour, Proc. Biol. Soc. Washington 37, p. 125 (pro Gymnopis Peters).

Diagnosis. Caecilians without a tail; primaries 95-158; secondaries 13-121; scales always present; 10-87 primary folds without secondaries; 1/d 14-67; tentacle in horseshoe-shaped groove on side of head between eye and nostril and nearer the former; few or no teeth in inner mandibular row; mandibular teeth larger than maxillary or palatine; teeth of a row uniform; eye visible or invisible, in orbit or under bone; length $100-510 \mathrm{~mm}$.; eleven forms.

Range. Vera Cruz and Guerrero, Mexico, to western Panamá. Apparently absent from Yucatan Peninsula. Cauca and Magdalena Valleys, Colombia. Ecuador. French Guiana. Sea level to 4500 feet.

Key to forms of Gymnopis

A. North American species.
B. Eye visible; tentacle slightly nearer eye than nostril; primaries 110 or less.
C. Secondaries 32-80.
D. $1 / \mathrm{d} 14-26$.
E. Secondaries 51-80 mexicana

EE. Secondaries 41 .clarkii
DD. 1/d 25-32 .. gracilior
CC. Secondaries 13 .. parviceps

BB. Eye invisible (if visible tentacle extremely close to eye); primaries 112 or more.
C. Secondaries 84-121.
D. Eye usually visible; primaries 121-137, secondaries 101121.. DD. Eye invisible.
E. Primaries 128-132 . multiplicata

EE. Primaries 112-126 proxima
CC. Secondaries $62-74$. oligozona

AA. South American species.
B. Eye visible; tentacle slightly nearer eye than nostril; primaries 124-125 albiceps
BB. Eye invisible (if visible tentacle extremely close to eye).
C. Primaries $100-120$.
unicolor
CC. Primaries $133-15$. nicefori

A tabular list of counts of Gymnopis

Specimens		Primaries	con	Primaries minus Secondaries	
1	parviceps	96	13	83	22
4	gracilior	95-102	32-78	22-6S	25-32
66	mexicana	97-110	51-80	26-59	14-26
4	clarkii	101-107	41	60-66	16-19
15	unicolor	100-120	22-74	41-87	27-40
38	proxima	112-126	St-104	15-36	23-34
2	albiceps	12t-125	45-55	70-89	35-46
10	oaxacae	121-137	101-121	10-26	26-40
8	multiplicata	128-132	101-111	17-28	25-35
3	oligozona	128-135	62-74	57-68	44-64
6	nicefori	133-158	45-104	43-87	39-67

157
Remarks. I have examined 157 specimens of this genus, including the types of eleven names. I have not examined the type of Cryptopsophis multiplicatus Boulenger 1883 in the British Museum ($=$ Gymnokis multiplicata proxima) or the type of Gymnopis multiplicata oaxacae Mertens 1930 (Senck. Mus. 22130).

The generic name Cryptopsophis appears in the synonymy of Gymnopis because the type species and specimen is identical with an earlier described American form. The specimen was erroneously supposed to have come from the Seychelles Islands, and geography, rather than anatomy, seems to have prompted its description.

The generic name Dermophis appears in the synonymy of Gymnopis because the type species of Dermophis (mexicanus) appears to me to be congeneric with the type species of Gymnopis (multiplicata). Dermophis was characterized by having the eye visible, in an open orbit, whereas Gymnopis had the eye invisible and roofed over by bone. This difference exists as far as the two type species are concerned, but these two extremes are so bridged, in other forms. that generic distinction is impractical.

In general forms with visible eyes have the tentacular aperture slightly nearer the eye than the nostril. Forms with invisible eves have the tentacular aperture very close to the eye and further from the nostril. Forms with visible eves have, on the whole, no teeth in the
inner mandibular row; fewer primaries and secondaries; greater difference between primary and secondary count ($=$ less of the body with bony scales). These criteria, which are not sufficiently clear cut to serve for dichotomy of the genus, indicate a vague division into two groups. One of these retains a well developed eye in an open orbit, but tends to a loss of scalation, a loss of the inner mandibular tooth row, and a more anterior position of the tentacular aperture. This group, containing mexicana and its races, parviceps and albiceps, is primitive in the retention of the eye, but presumably secondary in the other characters. The other group tends to reduction of the eye, but to retention of the inner mandibular tooth row, of the secondaries and scales, and of the posterior position of the tentacular aperture. This group contains multiplicata and its races, oligozona, unicolor and nicefori.

These two groups are more distinct in North America than they are in South America.

Specimens of oaxacae show the most complete scalation; specimens of parviceps show the most reduced scalation.

The "Dermophis crassus" of previous lists is, as appears from examination of the types, a straight synonym of Siphonops anmulatus.

The difference in the present treatment of mexicana and of multiplicata and their races from that of Boulenger is a natural consequence of the examination of 157 specimens and 11 types by me, as against the examination of 13 specimens and 3 types by him.

Gimiopis multiplicata multiplicata Peters

1874. Gymnopis multiplicata Peters, Mon Ak. Berlin, p. 616, pl. 1, f. 1; 1879 Mon. Ak. Berlin, p. 939, f. 7; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 100; Cope 1885, Proc. Amer. Phil. Soc., 22, p. 171; Boulenger 1895, Proc. Zool. Soc. London, p. 410; Günther 1902, Biol. Cent. Amer., Batr., p. 308; Nieden 1913, Gymnophiona, p. 21, f. 11; Dunn 1928 (in part), Proc. New England Zoöl. Club, 10, p. 75.
1875. Siphonops simus Cope, Proc. Amer. Phil. Soc. 17, p. 91; Brocchi 1883, Miss. Sci. Mex., p. 121.
1876. ?Dermophis simus Peters, Mon. Ak. Berlin, p. 938; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 99.
1877. Gymnopis sima Cope, Proc. Amer. Phil. Soc 22, p. 171; 1887, Bull. U. S. Nat. Mus. 32, p. 9.

Type. Berlin No. 3705, collected by Warszewicz.
Type locality. Veragua.

Range．Pacific side，western Panamá and Costa Rica；Atlantic side， Honduras．Sea level to 4500 feet．

Diagnosis．A Gymnopis with invisible eyes；primaries 12S－132； secondaries 101－111；difference $17-28$ ；1／d 25－35；length $35 S-510 \mathrm{~mm}$ ．

Description．The few specimens seen afford no points other than those given in the diagnosis．The color is black，lighter below．Peters （1S74）says there are 18 teeth on each side of the upper jaw．

Remarlis．The species Gymnopis multiplicata may be divided into three races；multiplicata from the Pacific side，proxima from the Atlantic side，and oaxacae from Mexico．The differences are not great：

	prim．	sec．	diff．	
proxima	$112-126$	St－104	$15-36$	no eyes
oaxacae	$121-137$	$101-121$	$10-26$	eyes
multiplicata	$12 S-132$	$101-111$	$17-28$	no eyes

The criteria given above will serve to distinguish all proxima from the other two races，and almost all oaxacac from almost all multiplicata． The ranges are quite intelligible save for the single Honduras locality for multiplicata，which would seem to indicate that proxima holds territory between two areas of multiplicata．Specimens seen，eight，as follows：
prim．sec．length diam． $1 / \mathrm{d}$
Honduras：
$\begin{array}{lllllll}\text { Progreso Dist．MCZ } & 11048 & 131 & 104 / 10 & 365 & 12 & 30\end{array}$
Costa Rica：
$\left.\begin{array}{llllll}\text { Tilaran USNM 70656 } & 129 & 101 / 16 & 35 S & 12 & 30 \\ \text { San Mateo USNMI 37761 } & 129 & 111 / 17 & 380 & 12 & 32 \\ \text { Cartago Coll．St．Luis Gonzaga } & 128 & 103 & - & - & - \\ \text { Taboga MNCR } & - & & - & - & - \\ \text { No locality MNCR } & 128 & 111 & & 370 & 11\end{array}\right) 34$

Panamá：
$\begin{array}{llllll}\text { Veragua Berlin } 3705 & 131 & 105 / 9 & 510 & 20 & 25\end{array}$
Peters（1879）records it from Antioquia，Colombia，but it is very prob－ able that this record was based on Berlin No． 9524 from Caceres， which is a specimen of G．nicefori．

Gtinopis multiplicata proxima (Cope)

1875. Siphonops mexicamus Cope, Journ. Acad. Nat. Sci. Philadelphia (2), 8, p. 96.
1876. Siphonops proximus Cope, Proc. Amer. Phil. Soc 17, p. 90; Brocchi 1883, Miss Sci. Mex., p. 121.
1877. Dermophis ? proximus Peters, Mon. Ak. Berlin, p. 938; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 99.
1878. Cryptopsophis multiplicata Boulenger, Ann. Mag. Nat. Hist. (5), 12, p. 166 (Seychelles Is. in errore).
1879. Gymnopis proxima Cope, Proc. Amer. Phil. Soc. 22, p. 171; 1887, Bull. U. S. Nat. Mus. 32, p. 9; Boulenger 1895, Proc. Zool. Soc. London, p. 410; Günther 1902, Biol. Cent. Amer., p. 308; Nieden 1913, Gymnophiona, p. 21 ; Noble 1918. Bull. Amer. Mus. Nat. Hist. 38, p. 346.
1880. Gymnopis multiplicata (part) Dunn. Proc. New England Zoöl. Club 10, p. 75 (breeding habits); Parker 1936, Trans. Linn. Soc. London, 19, 4, p. 45.

Type. USN工I 29762-3, collected by Gabb.
Type locality. Eastern Costa Rica $[=$ Limon].
Range. Nicaragua. Eastern Costa Rica, Prov: Bocas del Toro, Panamá. Sea level to 4500 feet.

Diagnosis. A Gymnopis with eyes usually invisible; primaries 112126; secondaries $S 4-104 ; 15-36$ primary folds without secondaries; $1 / \mathrm{d}$ $23-34$; length $190-480 \mathrm{~mm}$.

Description. Nost specimens are distinctly lighter (even white) on the belly. The primaries are somewhat interrupted in the anterior dorsal region. ANS 4928, without locality, has the eye visible and not completely under bone. USN.TI 19614 has two inner mandibular teeth; the first scale appears on the side, under the primary, four segments anterior to the first secondary. The tentacle is much closer to the position of the eve than to the nostril.

Remarks. Specimens of my own collecting, from Guapiles, Monteverde and Suretka, Costa Rica; Farm Six near Almirante, Panamá; were under logs in damp pastures. One of the last was a pregnant femake with one perfectly formed young in the oviduct. The embryo was 131 mm . long, 1 d 22. , the mother was 37.5 mm . long, $1 / \mathrm{d} 25$.

Specimens seen, 3S, as follows:
prim. sec. length diam. $1 / \mathrm{d}$

Panamá:
Bocas del Toro LSNMI 38754 $124 \quad 101 / 16$ 295
Coco Plum Estate, near Bocas IICZ 7990
Farm six MCZ 9931
9932
Costa Rica:

Suretka XICZ 9934	119	$97 / 11$	13	12
Limon USNXI 29762	117	91/S	430	15
" 29763	115	SS/11	480	$\because 1$
Salvadora Farm CSNMI St-41	116	92		
Monteverde MCZ i9si	120	8 ± 7	395	16
T98s	123	98/10	215	8
Reventazon LSNXI 38144	120	95/8	300	12
35145	119	92/5	320	13
38146	117	$92 / 3$	212	9
Guapiles MICZ 7989	124	104/9	380	15
Cariblanco BNLNH 1907-10-9, 10	116	94/9	480	18
Peralta MINCR				
Cartago Colleg. St. Luis Gonzaga	122	94/S	-	-
Parismina, M. Valerio coll.				

5 km . North of Cartago
XICZ 24526
No locality MCZ. 24527
" " Seminario de San Jose
" " MNCR
"، " "

Nicaragua:
Rio San Juan (Colorado Jct.) CSNAI 19612
$\begin{array}{lllll}124 & 100 / 9 & 395 & 12 & 33\end{array}$
Rio San Juan CSNMI 19613

- ." .. 19614

San Juan del Norte USN.M 15630
" ". " " LSNX 15643
Bluefields USNXI 37351
Escondido R. (50 mi . above Bluefields) USNXI 20704
$126 \quad 99 / 14 \quad 380 \quad 11 \quad 34$

119	97	9	300	9

118	$92 / 8$	340	15	23

124	$99 / 9$	300	10	30

$122102 / 16 \quad 280 \quad$ S 35
$120 \quad 98 / 11 \quad 322 \quad 12 \quad 27$

	$\begin{gathered} \text { prim. } \\ 121 \end{gathered}$	$\begin{gathered} \mathrm{sec} . \\ 99 / \mathrm{S} \end{gathered}$			1/d
El Bluffs, Bluefields AMNH S397				-	/
Eden Mine AMNH 8399	116	101/16	375	11	34
Hac. Valencia, San Miguelito, Chontales Mts. AMINH S396	122	103/11	470	19	26
Cape Gracias USN入I 15311	122	102/16	280	8	35
San Ramon, 125 mi. up Rio Wanks BMNH 1908-5-29, 122	121	9S/11	190	6	31
Boquete I. AMNH 8398	122	95/10	335	13	26
No locality USNM 15199	124	101/4	383	12	32
ANS 4928	11 S	97/10	277	9	30

Parker (1936) gives 119 primaries; 97 secondaries, last 10 complete; and $1 / \mathrm{d} 24$ for the type of Cryptopsophis multiplicatus.

Grmnopis multiplicata oaxacae Mertens

1930. Gymnopis multiplicata oaxacae Mertens, Abh. Ber. Mus. Magdeburg 6, 2, p. 153, f. 14.

Type. Senckenberg 22130, Dr. K. Lafrentz, Dec. 1927.
Type locality. Cafetal Concordia (900 m . alt., between Puerto Angel and Salina Cruz), Oaxaca, Mexico.

Range. Guerrero, Oaxaca, and Chiapas, Mexico.
Diagnosis. Eyes usually visible; tentacular aperture very close to eye; primaries 121-137; secondaries 101-121; difference $10-26$; $1 / \mathrm{d}$ 26-40; length 153-430 mm.

Description. The eye is visible in nearly all specimens. I could not make it out in the Mirador specimen, and Mertens failed to see it in one of the type series of five, so that two out of 15 lack eyes. Only five have the secondary count below 111, and three have the difference over 16.

Remarks. Lafrentz (1928, Blätt. Aquar. Terr. 39, 6, p. 115) says that the type series came from the "dungheap of the mule stable" and that the native name is "metlapil." He gives a photograph.

USNDI 11.5058 contained four well formed young 104 mm . long, and 4 mm . in diameter, $1 / \mathrm{d} 26$. The eye was conspicuous in all.

This form with its visible eye, inner mandibular teeth, posterior tentacle position, and nearly complete scalation, is presumably the most primitive member of the genus.

Its relations are obviously with multiplicata, as all the characters
overlap, although it has been possible to allocate all specimens without recourse to locality.

Specimens seen, ten, as follows:
prim. sec. length diam. $1 / \mathrm{d}$
Mexico:
Guerrero:
$\begin{array}{llllll}\text { Xaltianguis USNMI } 115057 & 133 & 121 / 11 & 153 & 4 & 38\end{array}$
El Limoncito, 15 km . N. Acapulco, EHT 16869
$127 \quad 106 / 8 \quad 275 \quad 7 \quad 39$
Oaxaca:
$\begin{array}{lllllll}\text { Mirador AMNH } 13448 & 128 & 114 & 373 & 11 & 34\end{array}$
Cafetal Concordia
Berlin 31696
$\begin{array}{lllll}127 & 101 / 7 & 275 & 8 & 34\end{array}$

"	31696	125	$111 / 8$	350	10
35					

$\begin{array}{lllllll}\text { " } & 31696 & 130 & 117 / 13 & 430 & 15 & 29\end{array}$
No locality Vienna
137121
Chiapas:
$\begin{array}{llllll}\text { Tonala, E. H. Taylor } & 121 & 106 / 16 & 331 & 9 & 37 \\ \text { La Esperanza USNMI 115058 } & 121 & 103 / 11 & 283 & 7 & 40 \\ 30 \mathrm{~km} . \text { N.E. Escuintla, } 900 \mathrm{~m} . \text {, } & & & & & \\ \quad \text { Nich S8205 } & 121 & 106 / 11 & 335 & 12 & 28\end{array}$
Mertens' counts:

124	$111 / 10$	295	13	26 type
125	$114 / 9$	390	15	26
126	$112 / 10$	430	15	29
125	$111 / 12$	400	14	28
121	$111 / 9$	295	11	27
no eyes				

Gymnopis oligozona (Cope)

1877. Siphonops oligozonus Cope, Proc. Amer. Phil. Soc. 17, p. 91.
1878. Gymnopis oligozona Peters, Mon. Ak. Berlin, p. 939; Cope 1885, Proc. Amer. Phil. Soc. 22, p. 171; Dunn 1928, Proc. New England Zoöl. Club 10, p. 76.
Type. USNM 25187.
Type locality. Unknown.
Range. Known only from Guatemala.
Diagnosis. A Gymnopis without visible eyes; tentacular aperture
remote from nostril; primaries 128-135; secondaries 62-74; 1/d 44-64; length 255 mm . to 305 mm .

Description. Rather uniform dark, the primary grooves lighter and the top of the head lighter. The type has 12 teeth on a side in the upper jaw, ten on a side in the prevomero-palatine series, nine outer mandibular and one inner mandibular. The tentacular aperture is horseshoe-shaped, concave posteriorly, and quite far back as in multiplicata.

Specimens seen, three, as follows:
prim. sec. length diam. $1 / \mathrm{d}$
Guatemala:
Finca El Volcán, Alta Vera
Paz U. Nich., Field No. $224 \quad 128 \quad 71 / 20 \quad 305 \quad 7 \quad 44$
No locality. BMNNH S7-4-12,2 $\quad 135 \quad 74 / 15 \quad 292 \quad 6.5$
No data. USNMI 2.5187 130 . 62/11 255
Remarks. The type is absolutely without any data at all. The British Museum specimen was received from the Basle Museum, and said to have been collected in Guatemala by Bernouilli. A note in the British Museum catalog says that Bernouilli visited Palenque, Flores, and Lake Itza. The Michigan specimen, collected by L. C. Stuart, gives at last a definite locality.

It is possible that the type of oligozona also served as the type of Siphonops syntremus Cope. The geographic and anatomical relationships of this form are clearly with G. multiplicata.

Gymnopis nicefori Barbour

1924. Gymnophis nicefori Barbour, Proc. Biol. Soc. Washington 37, p. 125.

Type. MCZ 9609, collected by Hermano Niceforo Maria, March 1924.

Type locality. Honda, Magdalena Valley, Colombia.
Range. Known from Honda, Girardot, and San Juan de Rio Seco in the Magdalena Valley, and from Caceres in the Cauca Valley, Colombia.

Diagnosis. A Gymnopis with eyes usually invisible, apparently not under bone; tentacle very close to eye; primaries 133-158; secondaries $45-10+$; 43-8S primary folds without secondaries; $1 /$ d $39-67$; length $100-245 \mathrm{~mm}$.

Description. The eye is visible in the specimens from Girardot and

San Juan. The color is "dark slate color, head a little lighter" (Barbour l.c.). The dentition of the type is given by Barbour as "maxillary teeth many, apparently about thirty; mandibular probably about equal in number, in two rows [I find no inner row in the type]." The Girardot specimen has 7 premaxillary-maxillary teeth on a side; 12 palatine; 10 outer mandibular; 0 inner mandibular. The mandibular teeth are twice the size of the maxillary or the palatine.

The Honda and Girardot specimens (4) have $150-155$ primaries; $97-104$ secondaries; 1/d 39-67. The Caceres specimen has only 138 primaries. The San Juan specimen is tiny, ill-preserved for counting, but appears to have 133 primaries and 45 secondaries.

Remarlis. Probably directly allied to unicolor of Guiana, but just as similar to oligozona of Guatemala. Its relationships with albiceps are obscure.

Specimens seen, six, as follows:
prim. sec. length diam.1/d
Colombia:

Honda MCZ 9609	153	$104 / 60$	193	5	39
"، AMNH 23387	158	$102 / 63$	233	5	47
"، AMNH 23388	150	97	178	4	44
Girardot Inst. La Salle	152	100	200	3	67
San Juan de Rio Seco					
MCZ 16089	133	45	100	2	50
Caceres Berlin 9524	138	$95 / 67$	245	6	41

Granopis unicolor (Duméril)

1863. Rhinatrema unicolor Duméril, Mém. Soc. Cherbourg, 9, p. 321.
1864. Rhinatrema concolor Duméril, 1.c., pl. 1, f. 6-7.
1865. Gymnopis unicolor Peters, Mon. Berlin Ak., p. 939; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 100; 1895, Proc. Zool. Soc. London, p. 410; Nieden 1913, Gymnophiona, p. 21.

Type. Paris 6 (three specimens one of which is labeled "type").
Type locality. Cayenne.
Range. Known only from Guiana.
Diagnosis. A Gymnopis with invisible eyes; primaries 100-120; secondaries $22-74 ; 41-87$ primary folds without secondaries; $1 / \mathrm{d} 27$ 40 ; length $108-235 \mathrm{~mm}$.

Description. Uniform dark.

Remarks. AMNH 1335, from " S . Amer.," has 22 fewer secondaries than have nine Guiana specimens, lowers their secondary count from 44 to 22 , and raises the number of primary folds without secondaries from 64 to 87 . Additional similar specimens, with locality, might be the basis for a different form.

Specimens seen, 15 , as follows:
prim. sec. length diam. $1 / \mathrm{d}$
Cayenne Paris 6

10 S	$67 / 45$	195	6	32
113	$63 / 45$	205	6.5	31
			type	
110	$55 / 44$	185	5.5	34
115	68	230	6	38
109	$5 S$	235	7	33
-	-	160	5	32
-	-	187	6	33
114	-	$56 / 22$	200	6
120	33			
118	74	195	5	39
113	59	200	6	33
-		154	5	30
-	-	109	4	27
-		108	3	36

Oke R., Cuyuni Trib., Brit. Guiana
Field 35117

100	$44 / 13$	162	4	40
109	$22 / 5$	189	5	34

Grmnopis albiceps (Boulenger)

1882. Dermophis albiceps Boulenger, Cat. Batr. Grad. Brit. Mus. (2), p. 98, pl. 8, f. 1.

Type. B\INH 80-12-5, 147.
Type locality. Ecuador.
Range. Known only from Prov. Santiago Zamora in the Oriente.
Diagnosis. A Gymnopis with visible eves; tentacle between eye and nostril, slightly nearer eve; primaries 124-125; secondaries 45-55; 1/d 35-46; length 175-210 mm .

Description. "Blackish gray, the head white" (Boulenger, l.e.).
Remarks. This is the only South American Gymnopis with the tentacle remote from the eve. It has more primaries than any other form with a similar tentacle position. In counts of rings and in proportion
it is close to and somewhat intermediate between the Guianan unicolor and the Colombian nicefori, which have the eye usually invisible and the tentacle rery close to the eye.

Specimens seen, two, as follows:
prim. sec. length diam. $1 / \mathrm{d}$

Ecuador:					
No data. BMNH S0-12-5, 147 Prov. Santiago Zamora. Michigan 125 55 S3051 124 $45 / 15$ 177 5 35					

Gminopis mexicana mexicana (Duméril and Bibron)

1841. Siphonops mexicamus Duméril and Bibron, Erpét. Gen. 8, p. 284; Cuvier 1849, Regne Animal (3), pl. 36, f. 1, 6; Duméril 1863, Mem. Soc. Cherbourg 9, p. 318, pl. 1, f. 10; Brocchi 1882, Miss. Sci. Mex., p. 120, pl. 21, f. 2.
1842. Siphonops mexicana Gray, Cat. Batr. Grad. Brit. Mus., p. 59.
1843. Dermophis mexicanus Peters, Mon. Ak. Berlin, p. 927, f. 6; Cope 1879, Proc. Amer. Phil. Soc. 18, p. 265; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 98, pl. 8, f. 2; Cope 1885, Proc. Amer. Phil. Soc. 22, p. 171; 1887, Bull. U. S. Nat. Mus. 32, p. 9; 1888, Journ. Morph. 2, 2, p. 300, pl. 22, f. 6 (otic region); 1889, Bull. U. S. Nat. Mus. 34, pl. 51, f. 21 (hyoid); Boulenger 1895, Proc. Zool. Soc. London, p. 404; Günther 1902, Biol. Centr. Amer., p. 305; Nieden 1913, Gymnophiona, p. 8; Ochoterena 1932, Ann. Inst. Biol. [Mexico] 3, 4, p. 363 (integument).
1844. Dermophis mexicanus mexicanus Dunn, Proc. New England Zoöl. Club 10, p. 74, pl. 5 (breeding habits).

Type. Paris 5c.
Type locality. Mexico.
Range. Oaxaca and Vera Cruz, Mexico, to western Nicaragua.
Diagnosis. A Gymnopis with visible eyes; tentacle between eye and nostril, slightly nearer eye; primaries $97-110$; secondaries $51-80$; $1 / \mathrm{d}$ 14-26; length $152-485 \mathrm{~mm}$.

Description. The belly is usually light in color. The scales appear first in the postcrior half of the segmental folds on the sides (after the eleventh primary in U. Mich. 6435ta from Guatemala). They are present in both halves, dorsally, laterally and ventrally in the posterior part of the body where the secondaries are present and complete. Mich. 64354a has $7-8$ premaxillary teeth; 11-12 maxillary ; 17-18 palatine; 15 mandibular; no inner mandibular. USNMI 51380 has the
tentacle equidistant from eye and nostril; U. Nich. 64354a has the tentacle 3 mm . from the eye and 4 mm . from the nostril, which is the usual position.

Sixty-two specimens have been counted for primaries and secondaries. The extremes are: five specimens with $9 \overline{7}, 100,110,110,110$ primaries from Nicaragua, Central America, Nicaragua, Guatemala, and Mexico respectively; 57 specimens fall into the narrow range of 101-109 primaries. The extremes in secondary count are: 51, 51, 52, 78, 50, from "N. E. Mexico," Tabasco, Vera Cruz, Tehuantepec and Chiapas respectively; 57 specimens have from $55-75$ secondaries. No sexual difference has been found in the counts of secondaries, primaries, or complete secondaries.

The length-diameter ratio (always somewhat untrustworthy) has been computed for 51 specimens. An adult pregnant female is, naturally, the fattest, with the low ratio of 14 . The slimmest are $23,24,25$, 26 from Mexico, and one with 24 from Salvador. The four fattest are two from Mexico and two from Guatemala. Aside from the pregnant female, no sexual difference can be made out, and no changes in proportions with age are apparent.

None of the figures on proportions or segment counts give any indication of a geographical trend.

IIabits. The animal is viviparous. MCZ 12122 from Guatemala was a pregnant female 430 mm . long (Dunn 192S, pl. 5). It had six young in the left oviduct and four in the right. The young were 145 mm . long.

Remarlis. This form with its three races resembles in tentacle position parriceps from Panamá and albiceps from Ecuador.

Specimens seen, 66, as follows:
prim. sec. length diam. $1 / \mathrm{d}$
Mexico:
Vera Cruz:

Cuatotolapam Mich. 41571	107	$72 / 12$	327	19	17
$415-2$	105	$70 / 12$	374	21	18
Vera Cruz ANS 4886	105	$55 / 6$	355	17	21
4887	105	$55 / 6$	228	11	21
4888	105	$55 / 6$	-	-	-
	4889	106	$59 / 6$	340	19
18					
4890	104	$59 / 6$	232	11	21
" \quad " ANINH 6306	102	$58 / 12$	354	18	20

	prim.	sec.	gth	iam.	1/d
Oaxaca:					
Tehuantepec \ICZ 1604a 1604 b	108	69/15	281	17	16
	109	73/11	425	17	25
	103	61	-	-	-_
Barrios [SNMI 30535	106	78/11	378	24	16
30536	105	60/0	170	7	24
30537	-		-	-	
Tabasco:					
Tabasco LSNMI 25102	105	61/9	365	18	20
Teapa B\MN 1907-12-19, 135	104	$51 / 7$	-	-	--
Chiapas:					
La Zacualpa A\INH 89\%	102	72/5	-	--	--
S98	107	74/9	-	-	--
S99	105	69/9	-	--	-
$21 / 2 \mathrm{~km}$. W. Soconusco, 50 m .					
6 mi. NE. Escuintla, 150 m . Mich. SS202	103	74/14	350	23	15
SS204	106	S0/10	310	17	18
? State?					
Finca Berlin 24051	-		460	30	15
St. Augustin Paris 5	104	69/10	475	27	17
*	101	$62 / 6$	357	19	20
"	106	73/10	388	17	23
"N.E. Mexico" ERD	110	$51 / 5$	395	15	26
"Mexico" Paris 5c	105	$60 / 5$	365	20	15
Berlin 9104	-		-	-	-
AMNH 13445	104	$58 / 2$	210	12	17
13446	105	$61 / 2$	283	13	22
13813	104	$63 / 2$	320	16	20

Guatemala:
No locality USNMI 25641
Hamburg 1926
Senck, 209Sb
MCZ 12121
12122
12123

105	$74 / 10$	440	23	19
103	$70 / 6$	-	-	-
103	$73 / 9$	--	-	-
$10 S$	$62 / 9$	420	23	19
109	$69 / 10$	430	30	14
105	$70 / 11$	240	15	16

Pacific side BMNH 64-1-26, 397	prim.	sec.	ength	diam.	/d
	106	68/10	463	24	19
	110	62/7	390	18	22
Escuintla USNM 12691			-	--	
Retalhuleu Senck, 2098a	107	72/16	-	-	--
Finca El Cipres, Volcan Suchil, Prov. Suchetepequez Mich. 64354					
	105	65/9	350	--	
	102	65/14	485	29	17
	105	65/10	210	13	16
	104	66/11	222	14	15
	106	73/9	160	10	16
	106	73/8	172	10	17
	101	64/8	280	15	19
" MICZ 11222	108	67/8	460	22	21
11223	105	$65 / 5$	395	21	18

Salvador:

Volcan Isalco ANS 4925	110	$75 / 8$	165	7	24
No data Mus. Na. Salvador	105	$73 / 15$	152	7	22
BMNH 1906-11-8, 2	107	$64 / 7$	395	20	20

Honduras:

Amapala C'SNMI 51380	107	$68 / 7$	350	18	19

No data Berlin 13207
10361
Nicaragua:

Polvon MCZ 1491a	105	60/11	-	-	-
1491b	107	57/7	350	16	22
2165a	104	54/10	185	9	20
2165 b	106	70/15	395	20	20
AMINH 1153	97	$55 / 7$	261	16	16
18667	105	59/12	305	16	19
No data LSNMI 16147	110	62/13	356	19	19
Mich. 65674	106	66/5	336	19	17

(?) Panamá:
No data BMNH 67-9-23, $3 \quad 104 \quad 63 / 10 \quad 430 \quad 21 \quad 20$
Central America:
$\begin{array}{llllll}\text { No data CSNM } 30008 & 100 & 64 / 9 & 345 & 18 & 19\end{array}$
It has also been recorded from Atitlan, Guatemala, by Brocchi (1883).

Grmnopis mexicana clarkil (Barbour)

1926. Gymnophis clarkii Barbour, Occ. Papers Boston Soc. Nat. Hist. 5, p. 191.

192S. Dcrmophis mexicanus clarkii Dunn, Proc. New England Zoöl. Club 10, p. 73.
Type. MCZ No. 11047, collected by Dr. Herbert Clark, June, 1925. Type locality. Tela, Honduras.
Range. Known only from Tela and San Pedro Sula, Honduras.
Diagnosis. A Gymnopis with visible eyes; primaries 101-107; secondaries $41 ; 1 /$ d 16-19; length 145-420.

Description. Only four specimens are known, so that little can be added to the diagnosis save that the color is "as usual, plumbeous," and that the tentacle is well in advance of the eye.

Remarks. The type was 145 mm . long, and since this is the length of an unborn embryo of mexicana mexicana, it must have been very young. The primary count is that of mexicana, and only the low secondary count (41 as against 51-80) distinguishes it.

Specimens seen, four, as follows:
prim. sec. length diam. $1 / \mathrm{d}$
Honduras:

Tela, MCZ 11047	107	$41 / 0$	145	9	
" 16					
" " 11779	107	$41 / 4$	420	25	17
San Pedro Sula, AMNH 33386	101	$41 / 5$	350	18	19
No locality AMNH 49953	104	41	380	-	-

Gimnopis mexicana gracilior (Günther)

1902. Dermophis gracilior Günther, Biol. Centr. Amer., Amph., p. 306, pl. 76, f. B; Nieden 1913, Gymnophiona, p. 9.
1903. Dermophis mexicanus gracilior Dunn, Proc. New England Zoöl. Club, 10, p. 73.
Type. BMNH 1901-12-19-137.
Type locality. Chiriqui, Panamá.
Range. Pacific slope of Costa Rica; Chiriqui, Panamá. Sea level to 4000 feet.

Diagnosis. A Gymnopis with visible eyes; primaries 95-102; secondaries 32-78; 1/d $25-32$; length 192-345 mm.

Description. The color and the tentacle position are as in $G . \mathrm{m}$. mexicana.

Remarlis. Three out of four specimens of this species are slimmer than any mexicana seen. The exception is a pregnant female which is as stout as the slimmest mexicana seen. This individual contained six well formed young which measured $100-106 \mathrm{~mm}$., and about 6 in diameter, yolk still being noticeable. The Panamá specimens have the usual secondary count of mexicana. but the single Costa Rican one has a very low count.

Specimens seen. four. as follows:
Costa Rica: prim. sec. length diam. 1/d
Pozo Azul BMINH

$1907-6-28,27$	100	32	192	6	32

Panamá:
Chiriqui BMNH 1901-12-19, 137
$\begin{array}{lllll}95 & 73 / 10 & 343 & 11 & 31\end{array}$
Boquete Cal. Acad. + Sci. $\begin{array}{lllllll}79463 & 99 & 68 / 8 & 325 & 13 & 25\end{array}$
Boquete Cal. Acad. + Sci. 79464 102

Gyinopis particeps (Dunn)
1924. Siphonops parriceps Dunn, Occ. Papers Boston Soc. Nat. Hist. 5, p. 93; 1928, Proc. New England Zoöl. Club, 10, p. 74 (breeding habits).

Type. MCZ 9407 , collected by E. R. Dunn and Chester Duryea, Aug. 6, 1923.

Type locality. La Loma (or Buenavista, another name), at elevation of 1200 feet (erroneously 2000 in original description), on the trail from Chiriqui Lagoon to David, Atlantic slope in Province of Bocas del Toro, Panamá.

Range. Known only from type locality.
Diagnosis. 96 primaries; 13 secondaries; 1/d 22 .
Description. Primary folds all complete, extending to anus; secondary folds 13 , first three incomplete; scales present all over in region of complete secondaries; maxillary teeth 13 , palatine teeth 10 , mandibular teeth 10 ; tentacle between eye and nostril, nearer to lip than to either, slightly nearer to eye than to nostril; eye nearer to lip than to
tentacle, nearer to lip than is the nostril; eyes farther apart than length of snout. Black; head lighter, tinged with brown. Length 180 mm .; diameter of head 5 mm ., neck 5 mm ., body 8 mm .; posterior angle of mouth to tip of snout 6 mm .; ratio of length to diameter 22.

Habits. We were eating breakfast in a palm thatch hut when one of our men called attention to a "snake" which was coming out of the ground under the raised platform on which we slept. The whole terrain was steep slopes. The animal was impossible to extricate from its burrow by pulling, and was dug out. The peculiar bottle-shape of the beast (possibly because it was a pregnant female) was immediately noticeable and was the cause of the difficulty of extraction. Later, three perfectly formed young were found in the right oviduct. They measure 76 mm ., and the diameter is about $3.5 \mathrm{~mm} ., 1 / \mathrm{d} 21$.

Remarks. My lack of knowledge of South American forms and of the correlations of scales and secondaries in Caecilians led me to place this form originally in Siphonops. The eye and the tentacle are nearer the lip than in Gymnopis mexicanus mexicanus, but the relative distance of tentacle, eye, and nostril is the same in both.

The low secondary count makes the species remarkably distinct.

Siphonops Wagler

1828. Siphonops Wagler, Isis 21, p. 742 (monotype Caecilia annulata Mikan).

Diagnosis. Caecilians with no tail; no secondaries; no scales; tentacle on side of head, between eye and nostril, nearer to eye and usually very close to it; no inner mandibular tooth row; no dorsal fin; anal region not a sucking disk; eye usually visible; primaries $81-133$; 1/d ratio $16-54$; length $126-535 \mathrm{~mm}$.; five forms.

Range. Colombia to southern Brazil and Paraguay. Argentina (?)

Key to species of Siphonops

A. Large species; primaries grooves white.
B. Primaries S1-100; black and white in preserved specimens. ammulatus
BB. Primaries 102-118; brown and white in preserved specimens.
paulensis
AA. Small species; unicolor.
B. Primaries $95-104 . .$. hardyi

BB. Primaries 108-112 . insulanus
BBB. Primaries 120-133..................................... brasiliensis

Remarls. S. paulensis occurs within the range of anmulatus, and occupies dry regions back of the coast range.
S. insulanus, which is intermediate between hardyi and brasiliensis, is an insular form, while the two more extreme mainland forms may occur together.

I have examined 253 specimens of Siphonops, and these include the types of annulatus, crassus, paulensis, and hardyi. I have not been able to examine the types of interrupta, brasiliensis, insulamus, maculatus, or marmoratus.

Siphonops annclates (Mikan)

1820. Caecilia annulata Mikan, Delect. Flor. Faun. Bras., pl. 11; 1924 Spix, Serp. Bras., p. 74, pl. 26, f. 1; 1829 Cuvier, Regne Anim. (2), 2, p. 100; 1831 Gray, in Griffith's Cuvier's Anim. King. 9, App., 110.
1821. Siphonops annulatus Wagler, Isis 21. p. 742, pl. 10, f. 1, 2; 1830, Nat. Syst. Amphib., p. 198; 1838 Tschudi, Merm. Soc. Sci. Nat. Neuchatel 2, p. 90; 1841 Duméril and Bibron, Erp. Gen. 8, p. 282, pl. 85, f. 1; 1863 Duméril, Mem. Soc. Sci. Nat. Cherbourg 9, p. 317, pl. 1, f. 2; 1868 Cope, Proc. Acad. Nat. Sci. Philadelphia, p. 118; 1879 Peters, Mon. Ak. Berlin, p. 940, f. 10; 1879 Wiedersheim, Anat. Gym. pl. 1, f. 1-13, pl. 2, f. 27, 32-34, pl. 3, f. 37-44, pl. 7, f. 82, pl. 9, f. 83; 1882 Boulenger, Cat. Bat. Grad. Brit. Mus. (2), p. 102, pl. 8, f. 4; 1889 Cope, Bull. U. S. Nat. Mus. 34, pl. 53 , f. 1, pl. 56 , f. 3; 1892 Boettger, Kat. Amph. Mus. Senckenberg. p. 62; 1895 Boulenger, Proc. Zool. soc. London, p. 412; 1899 Goeldi, Zool. Jarhb. Syst. 12, p. 120, pl. 9, f. 1-4; 1911 Ihering. Rev. Mus. Paulista 8, p. 10s, f. 1, 2, 3, 6, 7; 1912 Phisalix, Cong. Int. Zool 8 (Graz). pl. 4, f. 5 (integ.); 1913 Nieden, Gymno., p. 25. f. 1; 1915 Spengel, Blatt. Aq. Terr. 26, p. 220; 1927 Muller, Abh. Senckenberg. Mus. 40, p. 260; 1936 Sawaya, Rev. biol. hyg. (2) 7, p. 80, pl. 7; 1937 Bull. Univ. São Paulo 1, Zool. 1, pl. 30, f. 1-2, pl. 32, f. 13-15.
1822. Caecilia interrupta Cuvier, Reg. Anim. (2), 2, p. 100.
1823. Siphonops indistinctus Duméril, Mem. Soc. sci. Nat. Cherbourg 9, p. 318 (in part, the dried specimen).
1824. Dermophis crassus Cope, Proc. Amer. Phil. Soc. 22, p. 184 (upper Beni R., Bolivia).
1825. Siphonops annulatus marmoratus Sawaya, Bull. Univ. São Paulo 1, Zool. 1, p. 238, pl. 30, f. 4-5̄; pl. 31, f. 7 (Theresopolis, Rio de Janeiro, Brazil).

Type. Paris 15.
Type locality. Sebastianopolis, Brazil.
Range. From "Argentina or Paraguay" and Rio Grande do Sul,

Brazil, to Bolivia, Guiana, Venezuela, and the eastern part of Peru, Ecuador, and Colombia. Upper Cauca River, Colombia.

Diagnosis. A Siphonops with white primary grooves; eye distinct; primaries $81-100$; $1 / \mathrm{d} 16-43$; length $126-535 \mathrm{~mm}$.

Variation. In Mus. Nac. Brazil S31, from Theresopolis, Rio de Janeiro, the tentacle is slightly nearer the nostril than the eye, the snout is unusually long, and the hind end of the body is acuminate. In six from Serra de Maché, Rio de Janeiro, Mus. Paul. 940 A-E, and in one from "Brazil," Paris $1 \overline{7}$, the tentacle is almost equidistant between eye and nostril. In proportions and primary count these specimens do not differ from others which have the tentacle in the normal position closer to the cye.

The primary count ranges from 85 to 95 in 171 specimens (160 seen and 11 reported). Six specimens (four seen and two reported) have 81-84, and these are all from the southern part of the range. Seven specimens (five seen and two reported) have $96-100$, and five of these are from the western and northern parts of the range.

The majority of the measured specimens (79) have the $1 / \mathrm{d}$ ratio from $20-30$. The 20 stouter specimens ($(1 / \mathrm{d} 16-19)$ include the five smallest and three of the twelve largest; and seven out of eleven Colombian specimens. The seven slim specimens (33-43) are all from the south, and the slimmest is dried somewhat.

Remarks. Sawaya's marmoratus is a color variety, not a geographical race.

Goeldi (1899) says it lives by preference in dry localities. He speaks of a female found rolled up under an old stump in a very dry place at Colonia Alpina, near Theresopolis, in the Organ Mts., Rio de Janeiro. In the middle of the coil was a clump of six eggs, in a continuous string, from each end of which there was a free, thread-like, projection. The eggs measured 10 by 8.5 mm . The contained embryos were 4 mm . in diameter, with two external gills on the left side and three on the right. The find was made in December.

Sawaya (1936) speaks of this species being eaten by the snake Pseudoboa clelia.

The only close ally is paulensis. The two are known to occur together in two localities. S. ammututus has a vastly wider range, which practically encloses that of paulensis.

Specimens seen, 175 , as follows:
prim. length diam. $1 / \mathrm{d}$
Argentina or Paraguay:
$\begin{array}{lllll}\text { No locality, Hamburg } 1064 & \text { S7 } & 175 & 5 & 35\end{array}$

Brazil:

Santa Catharina, Joinville, Vienna Joinville AMNH 23693

São Paulo, Taubaté, Mus. Paul. 942
Franca " 953

Interior MCZ 10782
No locality
Hamburg 911-912
(35 spec.)
"
"
AMNH 23470
23471
23472
23473
23474
23475
23476
" 23477
Berlin 5968
Munich 140/1912
Rio de Janeiro:
No locality:
MCZ 290 328
Berlin 3704
Krakau 14671
BMNH 74-5-21-7
AMNH 23503
Serra de Macahé,
Mus. Paul. 940
940 A 940B 940 C
prim. length diam. $1 / \mathrm{d}$
87 - - -
prim. length diam. $1 / \mathrm{d}$

86	278	14	20
95	400	24	17
93	201	7	29

S5 (4)
86 (4)
S7 (5)
88 (7)
90 (S)
91 (5)
92 (2)
86
S6
$86 \quad 335$
$90 \quad 350$
87
$\begin{array}{llll}\text { SS } & 275 & 7 & 39\end{array}$
87
S6

$\overline{87}$	$\overline{185}$	9	$\overline{20}$

92	375	14	27
84	310	17	19
91	405	12	34
94	-	-	-
92	-	-	-
89	325	13	25
84	327	18	18
85	242	10	24
82	179	9	19
85	185	9	20
85	253	12	21

Nus. Paul. 940D
940 E
Petropolis
Vienna
MCZ 24S1
Munich 140/1912
Theresopolis
Munich
Mus. Nac. Brazil 540
" " " 831
Neu Friburgo
Hamburg 1093
USNMI
USNM
USNM
USNM
Espiritu Santo:
Sta. Tereza, 700 m .
Mus. Nac. Brazil S42
Sta. Tereza, 760 m .,
Mus. Nac. Brazil S43
Pau Gigante, Mus. Nac.
Brazil St7
SS

90	350	11	33
89	171	6	28
89	-	-	-
87	385	10	38
89	160	6	26
91	190	8	23
93	395	14	28
89	355	15	24
91	350	15	23

Mts. between Espiritu Santo and Minas Garaes,
Hamburg 1354
91
360
12
$300 \quad 9$
30
Hamburg ${ }_{\text {، }}^{1354}$
$86 \quad 225.10 \quad 22$

91	378	14	27

86	-	-	-
S8	145	9	16
85	-205	13	16
S3	-		
S9	325	-13	-25

93	350	17.5	20

$93 \quad 290 \quad 11 \quad 26$

91	305	13	23

$94 \quad 320 \quad 15 \quad 21$
S9 - - -
87 - - --
92 - - -
88 -- --

91	370	18	21

92	147	8	$1 S$

$\begin{array}{lll}295 & 16 & 18\end{array}$
No locality Hamburg 1353

Frankfort 21026
Berlin 14043
Vienna
"
"
"
"
$91 \quad 350 \quad 15$
23
prim. length diam. $1 / d$

Hamburg 13.54	prim.	Iength 245	diam. 9	$1 / d$ 27
" ${ }^{\text {، }}$	90	210	8	28
" ${ }^{\text {c }}$	90	178	8	22
، ${ }^{\text {، }}$	93	165	5.5	30
Minas Geraes, Mendez, on Rio Jequitinhonha, Vienna	92	-	-	-
Bahia.				
No locality,				
МС\% 1528	95	367	16	23
AMNH 1S668	SS	356	14	25
" 23502	93	283	16	1 S
Vienna	93			
"	90			
Berlin 95:6	93	315	11	29
Hamburg 1355	92	382	13	$\because 9$
Paris 15e	100	157	7	22
BMNH 61-3-23-20	92			
، 62-1-30-62	91	171	7	24
" 69-2-22-6	95	225	9	25
" 1924-9-20-0	93	210	10	21
Amazonas, Tabatinga,				
Venna	97	-	-	-
Lagoa Japaranão, near Teffé MCZ 1520	88	360	16	22
? State?				
Tozuzu,				
Berlin 7169	95	128	6	21
Brazil, no locality:				
Paris 15	S6	-	-	-
" 15 d	94	450	24	Type 19
	91	261	6	43
AMNH 23501	84	284	13	dry 22
Hamburg 1094	90	323	13	24
Frankfort 2102 a	S9	-	-	-
" ${ }^{\text {c }}$	S8	364	17.5	20
USNM 58749	93	190	18.5	22

Bolivia:
Near Riberalta AN.NH 15000
Upper Beni R.
MCZ 6636
ANS 11344
Peru:
No locality
ANS 11346
Moyabamba
BMNH 74-8-4,5
74-8-4, 6
Iquitos, AMNNH 42850
E. of Contamna, Peru Brazil frontier

AMNH 42835
San Antonio, Rio Itaya
AMNH 42842
" 42843
" 42844
" 42845
" 42846
" 42857
" 42848
" 42849
Pampa Hermosa, middle Ucayali, mouth of Cushatabay AMNH 42838 " 42839

Mouth of Santiago, upper Marañon

AMNH 42833

Ecuador:
Sarayacu U. Michigan 89460 BMNH
$\begin{array}{llll}96 & 185 & 7 & 26\end{array}$
93

89	295	13	23
90	225	10	22

$89 \quad 280 \quad 11 \quad 25$

93
98
94
$\begin{array}{llll}92 & 420 & 17 & 25\end{array}$
cotype Dermophis crassus
$94 \quad 42.5 \quad 15 \quad 24$
$94 \quad 385 \quad 16 \quad 24$
$94 \quad 420 \quad 21 \quad 20$
$94 \quad 280 \quad 11 \quad 25$
$\begin{array}{llll}91 & 337 & 13 & 26\end{array}$
$\begin{array}{llll}92 & 378 & 17 & 23\end{array}$

92	310	13	24

$91 \quad 413 \quad 15 \quad 21$
$93 \quad 380 \quad 15 \quad 25$
$91 \quad 410 \quad 18 \quad 23$
$90 \quad 380 \quad 16 \quad 24$
$\begin{array}{llll}89 & 263 & 11 & 24\end{array}$
$\begin{array}{llll}93 & 300 & 14 & 21\end{array}$
$\begin{array}{llll}93 & 425 & 17 & 25\end{array}$

91	-	-	-
92	148	9	16

prim. length diam. $1 / \mathrm{d}$

Pastaza R. (Canelos to Marañon R.)

MCZ

"
prim. length diam. 1/d

90	160	9	18
87	245	13	19
90	290	14	21
91	385	13	30
92	345	14	25
93	-	-	-
96	-	-	-
94	375	19	20
90	360	17	21
91	345	18	20

No locality
Berlin 9814
AMNH 17448
U. Michigan (5)

Colombia:
Villavicencio Inst. La Salle
AMNH 23270
23171
Medina Mts., N. E. of Villavicencio

AMNH 49955

Guaicaramo
AMNH 23384
" 23385
" 23386

Cayenne:
No locality, Paris 15c

```
86
```

Surinam:
No locality, Paris 15b

95	365	15	24
94	340	15	23
91	347	18	19
92	255	13	20

93	126	7	18

$\begin{array}{llll}59 & 290 & 18 & 16\end{array}$
$\begin{array}{llll}85 & 355 & 19 & 19\end{array}$
$\begin{array}{llll}91 & 415 & 20 & 21\end{array}$
$\begin{array}{lll}257 & 13 & 20\end{array}$

92	430	23	19
87	144	8	18
85	171	10	17

Venezuela:
Barinas, Zamora Prov., $\begin{array}{lllll}\text { Munich } & 94 & 320 & 12 & 27\end{array}$

South America:
No locality
AMNH 49975
prim. length diam. $1 / \mathrm{d}$
$91 \quad 336 \quad 15 \quad 22$

Besides the localities listed above, Ihering (1911) has recorded anmulatus from the following places in Brazil: Rio Doce, Espiritu Santo; Pelotas, Rio Grande do Sul; the State of Matto Grosso. Spengel (1915) records it from Para.

Siphonops paulensis Boettger

1892. Siphonops paulensis boettger, Kat. Batr. Mus. Senckenbergianum. p. 62; Boulenger 1896. Proc. Zool. Soc. London, p. 412; Ihering 1911. Rev. Mus. Paulista 8, pp. 91, 92, 109; Nieden 1913. Gymnopiona, p. 25; Serié 1918-19, Physis, 4, 17, p. 361; Sawaya 1937, Bull Univ. São Paulo 1, Zool. 1, p. 238, pl. 31, f. 11.
1893. Siphonops paulensis maculatus Sawaya, Bull, Univ. São Paulo, 1, Zool. 1, p. 240 (Theresopolis, Rio de Janeiro, Brazil).

Type. Mus. Senck. 2102, 1 b.
Type locality. São Paulo, Brazil.
Range. States of Rio Grande do Norte, Goyaz, Matto Grosso, Rio de Janeiro, and Sāo Paulo, Brazil; Villarica, Paraguay; Sta. Cruz. and Buenavista, Bolivia; San Ignacio, Missiones, Argentina.

Diagnosis. A Siphonops with white primary grooves; primaries 102-118; 1/d 22-39; tentacle anterior to and a little below eye; eye distinct; length 139 to 480 mm .

Description. Boettger described paulensis as slimmer than annulatus; with more primaries; smaller head; different tentacle position; different color.

Eight specimens under 300 mm . in length have the $1 / \mathrm{d}$ ratio $22-28$; sixteen between $300-350$ have it $23-38$; eleven between $350-400$ have it $25-38$; nine over 400 have it $27-39$. Forty-two ammulatus from the south have it $16-39$, six above 30 . This character is not diagnostic. Boettger gives an $1 / \mathrm{d}$ of 32 for paulensis.

Boettger gives a range of primaries of 110-115. Ihering says 20 São Paulo specimens had 114-116, except for one with 111. I count 106-117 on eighteen São Paulo specimens and 104-110 on seven from Goyaz.

Nine from Paraguay have 104-116; seven from Bolivia have 102-113. The maximum count in southern annulatus is 96 , the minimum 81 .

Sawaya (1937) has recorded a maximum of 118 for paulensis.
The primaries are interrupted dorsally in some of the Paraguay series.

Preserved specimens are brown, while annulatus is black.
The size of the head I cannot see to be different from that of annulatus.

The position of the tentacle seems to me to be exactly that of annulatus, with the exception that some annulatus have it quite far from the eye.

The number of rings is the best differentiating character, but since three annulatus from Bahia, Upper Beni R., and Tabatinga, have 100,98 , and 97 annuli respectively, this difference may be very slight.

Habits. Ihering (1911) says it is the commonest species in the environs of São Paulo City, is found in "dry places such as the range of Ypiranga," lives in ant hills but does not eat the insects, and has had the egg capsule of a spider in its stomach.

Remarks. Its only ally is annulatus, to which it is remarkably close. Both occur in the states of São Paulo and Matto Grosso, and in Paraguay and Bolivia. The only locality from which I have seen both is Taubaté in São Paulo. The two specimens recorded from there were approximately of the same proportions; annulatus $278 / 14=19.8$; paulensis $286 / 13=22$. The annulatus had 86 primaries; the paulensis 109. Both are reported by Sawaya from Theresopolis, Rio de Janeiro. Paulensis seems to be more an inhabitant of the high interior, although its range seems to be completely surrounded by the range of annulatus. The range has a remarkable similarity to that of Cnemidophorus ocellatus, and it is probable that it inhabits the savanna country which stretches back of the coast from Rio Grande do Norte southwest to São Paulo.

Sawaya's maculatus is not a race but a variety, as it is an occasional occurrence in the midst of normal paulensis.

Specimens seen, 44, as follows:
Brazil: prim. length diam. 1/d

São Paulo:

Taubaté, Mus.	Paul.	1013	109	286	13	22	
Ypiranga	"	"	939	112	398	16	25
""	"	"	947	110	363	13	28
"	"	"	947 A	114	360	16	22

Bolivia:

Sta.Cruz.	$500 \mathrm{~m} .$,	Carnegie	11598	108	217	9	24
"	"	"	11599	106	166	7	24
"	"	"	2643	102	302	9	33
Buenavista	BMNH	H 1927-8	-1, 135	105	332	10	33
"	"	'	136	113	435	15	29
"	"	"	137	109	328	9	36
"	"	"	138	110	317	9	35

prim. length diam. 1/d

No data.
Berlin 4

Ihering (1911) has recorded a specimen in the Museu Paulista from Raiz de Serra, São Paulo. Sawaya (1937) has recorded paulensis from Theresopolis, Rio de Janeiro, Brazil. Serié (1918-19) has recorded paulensis from San Ignacio, Missiones, Argentina.

Siphonops hardyi Boulenger

1888. Siphonops hardyi Boulenger, Ann. Mag. Nat. Hist. (6), 1, p. 189; 1891, Ann. Mag. Nat. Hist. (6), 8, p. 457; 1895, Proc. Zool. Soc. London, p. 412, pl. 24, f. 3; Ihering 1911, Rev. Mus. Paulista, 8, p. 109; Nieden 1913, Gymnophiona, p. 26.

Type. BMNH No. 87-12-29-39, collected by M. F. Hardy de Drénduf.

Type locality. Porto Real, Rio de Janeiro, Brazil.
Range. The states of Rio de Janeiro and São Paulo, Brazil, in mountains of the coast ranges.

Diagnosis. A Siphonops of uniform color; primaries 95-104; 1/d $27-45$; eye distinct; tentacle a little anterior to and below the eye; length $136-17 \mathrm{~S} \mathrm{~mm}$.

Description. "Teeth small, subequal"; "uniform blackish" (the Ypiranga specimen is gray, lighter below); tentacle very near eye; primaries complete; Ihering gives 100 primaries for a specimen from Ypiranga, and 95 for one from Serra de Macahé. Boulenger (1895) says "eye more or less distinct"; and "tentacle close to and very slightly below eye."

Habits. Not known.
Remarks. This is the shortest species of the hardyi-insulanusbrasiliensis group. The proportions are much the same in all three, the tentacle position is not diagnostic, although Boulenger (1891) states
that the tentacle is closer to the eve in hardyi than it is in brasiliensis. The only real differences between the three are the number of primaries. The maximum number in hardyi is 104, insulamus has 10S-112, and brasiliensis has 120-133. Both hardyi and insulanus are quite small (max. length 178 mm ., and 200 mm . respectively) while brasiliensis reaches a length of 312 mm .

Specimens seen, nine, as follows:
prim. length diam. $1 / \mathrm{d}$

> Rio de Janeiro:

Porto Real

BMINH no. $87-12-29-39$	104	145	4	36	
..	$91-6-16-14$	102	150	4	37
".	$91-6-16-15$	100	145	4	36
TYPE					

$\begin{array}{llllll}\text { Nambucaba, Mus. Nac. Brazil S41 } & 103 & 136 & 3 & 45\end{array}$
Organ Mts. BMNH

$1902-11-25-11$	97	178	5.5	32

Tijuca, Fed. Dist. M, C. Z. 24954
Serra de Macahé

95	152	4	38
99	160	6	27
97	174	6	29

Sāo Paulo:
Ypiranga
$\begin{array}{lllll}\text { Mus. Paul. } 944 & 96 & 170 & 5 & 34\end{array}$

Siphonops insulanus Ihering

1911. Siphonops insulanus Ihering, Rev. Mus. Paulista. 8, p. 109; Nieden 1913, Gymnophiona, p. 26.

Type. In Museu Paulista, not seen.
Type locality. I. Victoria and I. São Sebastião, off coast of São Paulo, Brazil.

Range. Known only from the type localities.
Diagnosis. A Siphonops of uniform color, primaries 108-112; 1/d 31-41; eye indistinct; tentacle a little anterior to and below the eye; length 152-200 mm.

Description. Little can be added to the diagnosis. Ihering says all the rings "are interrupted in the dorsal region and at times a little on the ventral line." The color is uniform light gray. The tentacle is very
close to the eye and a little below. Of the four specimens seen the eye was invisible in two. The primaries were interrupted dorsally in the middle of the body in one out of four. Thering mentions a length of 200 mm ., and a length-diameter ratio of 41 .

Habits. Not known.
Remarks. Allied to hardyi and to brasiliensis, and apparently between the two.

Specimens seen, four, as follows:
prim. length diam. $1 / \mathrm{d}$
Isla Victoria:

Mus. Paul 946	10S	157	31
946 A	110	194	$5 \quad 39$
916 B	111	152	eye invisible 4
sla S. Sebastião			eye invisible
Mus. Paul. 945	112	162	40

Siphonops brasiliensis Lütken

1851. Siphonops brasiliensis Lütken, Vid. Meddel., p. 52; Reinhardt and Lütken 1861, Vid. Meddel. p. 202; Boulenger 1891, Ann. Mag. Nat. Hist. (6), 8, p. 457; 1895, Proc. Zool. Soc. London, p. 412; Ihering 1911, Rev. Mus. Paulista, 8, p. 110; Nieden 1913, Gymnophiona, p. 25; Parker and Wettstein 1929, Ann. Mag. Nat. Hist. (10), 4, p. 594.
1852. Dermophis? brasiliensis Peters, Mon. Ak. Berlin, p. 938.

Type. In Copenhagen Museum, collected by Langgaard. Not seen. Type locality. Brazil.
Range. Known from the states of Santa Catharina, São Paulo, Minas Geraes, and Rio de Janeiro, Brazil.

Diagnosis. A Siphonops with uniform color; primaries 115-133; 1/d 31-54; tentacle somewhat anterior to and below the eye; eye indistinct; primaries frequently interrupted; length $167-312 \mathrm{~mm}$.

Description. The original description gives 133 primaries; the 20 first and the last 13 complete; "gray", $1 / \mathrm{d} 46$. The eye may be distinct, indistinct, or invisible. The primaries may be mostly interrupted or all complete. There seems to be no change in proportions with age. Parker and Wettstein (1929) state that the premaxillary-maxillary teeth are $6-8$ on a side; total 12 in the type.

Habits. Not known.

Remarks. The relationships of this set of species have been dealt with under hardyi. The two mainland forms occur together at Ypiranga, São Paulo, where hardyi has $96-100$ primaries and brasiliensis has 122.

Specimens seen, 21 , as follows:
prim. length diam. $1 / \mathrm{d}$
Santa Catharina:
Colonia Hansa
Hamburg 1807
124

213	5	43
205	6	36

Frankfort 2102, 1d 122
235
6.5

36
Joinville
Vienna
124
"
131
Mus. Nac. Brazil 542115
125
215
$5 \quad 43$
$\begin{array}{lll}235 & 6 & 39\end{array}$
no eye
São Paulo:
Pernahyba
Vienna
126
" 127
"
126
Franca
Mus. Paul. $960 \quad 130$
$217 \quad 6 \quad 36$ prim. int.
ľpiranga
Mus. Paul. 961
$1220^{7} \quad 205$
$6 \quad 36$
prim. comp.
Rio de Janeiro:
Rio
$\begin{array}{lllll}\text { Paris } 15 \mathrm{~m} . & 120 & 190 & 4 & 47\end{array}$
Petropolis

MCZ 24829	130	312	9	35
" 24826	129	167	5	33

South Brazil:

Hamburg 1927	121	268	5	54
Hamburg 1927	121	268	7	39
",	1927	121	260	5

Brazil:
Frankfort $121 \quad 265 \quad 8 \quad 44$

No locality:
BMNH 98-6-27, 3
Vienna
Mus. Nac. Brazil 543
prim. length diam. $1 / \mathrm{d}$ $123 \quad 245 \quad 8 \quad 31$

| 122 | 247 | 6.5 | 38 |
| :--- | :--- | :--- | :--- | eye invisible 546 eye invisible

Ihering (1911) has recorded specimens in the Museu Paulista from Rio Fieo, São Paulo, and says it occurs in the State of Minas Geraes.

Note for identification: This animal has been confused with Chthonerpeton riviparum (q. v.). The Siphonops has: no inner mandibular teeth, the Chthonerpeton has 3-4; the tentacular aperture in the Siphonops is much closer to eye than to nostril, in the Chthonerpeton it is only slightly closer to eye than to nostril; the Siphonops has primaries 115-133, the Chthonerpeton has primaries 133-166; the Siphonops has a normal vent, the Chthonerpeton has a small sucking disk around the vent; the Siphonops is presumably oviparous, the Chthonerpeton is known to be viviparous.

Caecilia Linné

1758. Caecilia Linné, Syst. Nat. (10) 1, p. 229 (included species tentaculata Linné and glutinosa Linné). Fitzinger (1843, Syst. Rept., p. 34) designated C. lumbricoidea [lombricoidaea] Daudin 1803 ($=C$. gracilis Shaw $=C$. tentaculata Linné in part) as type. Shaw in 1802 (Gen. Zool. 3, 595) restricted tentaculata when describing gracilis, and I designate tentaculata Linné as restricted by him as type of Caccilia. Daudin's species was not in the content of the original genus.
1759. Coccilia Latreille, in Sonnini and Latreille, Hist. Rept. 4, p. 237 (pro Caccilia Linné).
1760. Amphiumophis Werner, Abh. Mus. Dresden 9, 2, p. 14 (monotype Amphiumophis andicola Werner, 1. c.).

Diagnosis. Caecilians without a tail; primaries 110-285; secondaries $0-94$; scales usually present; 55-268 primary folds without secondaries; $1 / \mathrm{d} 26-160$; snout projecting; tentacle in horseshoe-shaped groove on under surface of snout, below and slightly posterior to nostril; eye visible or invisible, in open orbit or roofed by bone; anterior teeth on both jaws enlarged, especially on lower; inner mandibular tooth row well developed to absent; length $126-1375 \mathrm{~mm}$.; 16 forms.

Range. Coclé, Panamá, to Guayaquil, Ecuador, and Carabaya and Chanchomayo, Peru. The Guianas. Brazil. Sea level to 6200 feet.

Key to forms of Caccilia
A. Secondaries present.
B. Primaries $110-150$.
C. Secondaries 38-83 dunni
CC. Secondaries 12-37 tentaculata
CCC. Secondaries 8 or less.
D. Primaries $110-119$
.guntheri
DD. Primaries 139-150
abitaguae
BB. Primaries 154-285.
C. Primary count minus secondary count plus $1 / \mathrm{d}$ ratio less than 282; primaries less than $239 ; 1 /$ d ratio less than 94 .
D. No color markings.
E. Secondaries 2S-94.
F. Primaries 185 ; 91 without secondaries
armata
FF. Primaries $15 \overline{5}-190 ; 108$-138 without secondaries
nigricans
FFF. Primaries $187-238$; at least 152 without secondaries thompsoni EE. Secondaries S -25 .
F. Primaries 154-161 subnigricans

FF. Primaries 185-214 .gracilis
DD. Color markings usually present.
E. Eyes visible; usually a pair of yellow spots on each segment; primaries 154-199; secondaries 2-11.
pachynema
EE. Eyes invisible; gray with black primary grooves; secondaries 7-29.
F. Primaries 171-192 ochrocephala

FF. Primaries 204-209 . polyzona
CC. Primary count minus secondary count plus $1 / \mathrm{d}$ ratio more than 291; primaries over 205; 1/d ratio usually over 100
bassleri
AA. No secondaries.
B. Primaries less than 200 ; eyes visible.
C. Primaries less than 150 .
D. Primaries $110-119$
guntheri
DD. Primaries 125-139 . degenerata
DDD. Primaries $145-146 \ldots . .$. caribea
CC. Primaries 154-199 . pachynema

BB. Primaries 226-231; eyes invisible................. . . elongata

Tabular list of counts of Caecilia

Specimens seen	species	primaries	secondariesprimaries minus secondaries	$1 / \mathrm{d}$	
4	guntheri	$110-119$	$0-8$	$110-119$	$27-31$
27	tentaculata	$112-147$	$12-37$	$79-133$	$22-52$
63	degenerata	$125-139$	0	$125-139$	$31-76$
19	dunni	$123-150$	$38-83$	$55-85$	$32-57$
2	caribea	$145-146$	0	$145-146$	$53-55$
3	abitaguae	$139-150$	$5-6$	$134-144$	$43-59$
2	subnigricans	$154-161$	$17-18$	$137-143$	$58-62$
1	armata	185	94	91	56
19	nigricans	$155-190$	$28-62$	$108-138$	$37-66$
25	pachynema	$154-199$	$0-11$	$154-199$	$37-84$
101	ochrocephala	$171-192$	$7-29$	$149-179$	$39-87$
31	gracilis	$185-214$	$8-25$	$167-193$	$48-93$
2	polyzona	$204-209$	$10-17$	$187-199$	$43-61$
10	thompsoni	$187-238$	$29-41$	$152-200$	$45-92$
3	elongata	$226-231$	0	$226-231$	$83-89$
12	bassleri	$206-285$	$14-41$	$174-268$	$80-160$

Caccilia by areas

Caecilia of Panamá

		prim.	sec.	$1 / \mathrm{d}$
1	tentaculata	131	12	28
99	ochrocephala	$171-192$	$9-29$	$39-87$
3	elongata	$226-231$	0	$83-89$

Caecilia of Atrato drainage, Colombia

guntheri	119	0	29
dunni	$132-133$	$50-61$	$32-35$
nigricans	190	52	57
ochrocephala	185	23	50

Caecilia of Colombian Chocó

2	guntheri	$110-115$	0	27
15	dunni	$128-150$	$50-83$	$37-57$
7	nigricans	$159-188$	$36-4 \overline{7}$	$37-58$

Caecilia of Pacific slope of Ecuador

		prim.	sec.	$1 / \mathrm{d}$	
1	guntheri	118	8	31	
1	dunni	123	38	41	
9	nigricans	$155-180$	$28-62$	$42-66$	
3	bassleri	$206-251$	$14-32$	$119-130$	
12	pachynema	$158-183$	$0-10$	$40-81$	
Caecilia of the Cauca Valley,					
Colombia					
1	caribea	145	0	55	
2	pachynema	$159-166$	$2-7$	$52-78$	
2	polyzona	$204-209$	$10-17$	$43-61$	
1	thompsoni $(?)$	212	35	(Rio Coqueta, Cauca Valley?)	

Caecilia of Magdalena Valley, Colombia
subnigricans
154-161
17-18
58-62
thompsoni
187-238
29-39
45-92
Caecilia of Barranquilla and Santa Marta region, Colombia

tentaculata	$116-147$	$14-21$	$31-38$
caribea	146	0	63

Caecilia of the Colombian Oriente

51	degenerata	$128-139$	0	$31-76$
2	tentaculata	$113-146$	$29-31$	31
1	thompsoni (?)	212	35	84
1	bassleri	244	25	(Rio Caqueta?)
2	pachynema	$156-180$	0	$38-54$

Caecilia of the Ecuadorian Oriente

dunni	123	67	35
tentaculata	$115-122$	$29-33$	$30-35$
abitaguae	$139-150$	$5-6$	$43-59$
bassleri	$254-271$	$28-41$	$124-160$
pachynema	174	0	73

Caecilia of the Peruvian Oriente
tentaculata
120-129
2S-31
36-39
gracilis
188
21
56
bassleri
230-285
17-30
80-124
pachynema
165-199
0-11
59-70

Caecilia of the Guianas

prim
sec.
1/d
13
25
tentaculata
gracilis

112-146
185-207

13-37 27-52
9-23 48-93

Caecilia of Brazil
tentaculata
130
15 46
armata 185
94 56
gracilis
214
2592
This list by areas shows clearly that as many as five perfectly distinguishable forms may occur in a single geographical area. Colombia has twelve forms, Ecuador seven, Peru four, Panamá and Brazil three, and the Guianas two. No specimens of Caecilia have been seen or reported from Venezuela, but at least two (tentaculata and gracilis) must occur there.

Remarks. A diagram of the forms, with dumni, nigricans, and armata, thompsoni, and bassleri arranged in order of increasing number of primaries and increasing slimness, and with the other forms appended as they seem to fit, is given here as a possible scheme of relationships.

Two forms, C. dumbi and C. armata, retain more of the scalation than do the others. C. nigricans is a close third. As dumni has a combination of few primaries and many secondaries it may be assumed to be the most primitive existing form. Other forms show: an increase in primaries; a decrease in secondaries; extreme attenuation; degeneration of the eye; a combination of these characters, and may be assumed to be more specialized.

thompsoni \qquad polyzona \qquad ochrocephala

The genus could, very plausibly, be regarded as monotypic with 16 races, so closely do allied forms resemble each other. But as many as five different forms may occur together and remain distinct, and at present it seems best to treat each recognizable form as a species. The difficulty of treating them in any other way may be illustrated by the fact that one can start with nigricans of the Chocó, and, by a series of easy transitions (via subnigricans of the Magdalena and tentaculata of the Oriente) arrive at guntheri, also of the Chocó. Also, in this set of forms, dumi is about as good an intermediate between nigricans and tentaculata and occurs with both, while nigricans itself is intermediate between the two forms of the Magdalena Valley, subnigricans and thompsoni. One could, perhaps consider ochrocephala and polyzona as races of a species, and the guntheri-degencrata-abitaguae-caribea set as races of another species.

Linné (1758) used the spelling Caecilia. The first occurrence of the emended spelling Coecilia that I have noted is Latreille (1802). There have been so many writings of the generic name in type which does not differentiate the diphthong "ae" from the diphthong "oe" that I have given up any attempt to differentiate between them in synonymies, and have used Caecilia throughout.

Cope, in 188.5, put his Caccilia ochrocephala into the genus Herpele. I see no reason why ochrocephala should be placed in a different genus from tentaculata and gracilis. The West African squalostoma, the type of Herpele, has the tentacular aperture more posterior than any American species, and in it the anterior maxillary and dentary teeth are not enlarged. I do not consider squalostoma as congeneric with any American species.

The single specimen in Dresden upon which Werner, in 1901, founded his genus and species Amphiumophis andicola, is, in my opinion, conspecific with Caecilia tentaculata.

The following list contains described species which I think valid:
tentaculata Linné 1758.
gracilis Shaw 1502 .
pachynema Günther 1859.
ochroccphala Cope 1866.
guntheri Peters 1879.
polyzona Fischer 1879.
nigricans Boulenger 1902 .
thompsoni Boulenger 1902.
dunni Hershkovitz 1938.
I have examined the types of all of these except tentaculata and gracilis.

I have seen a specimen of gracilis which was so named by the describer of the species.

The following list contains described species which I regard as invalid. I have examined the types of all of these.
albircntris Daudin $1803=$ tentaculata.
lombricoidaca Daudin $1803=$ gracilis.
isthmica Cope $1877=$ tentaculata.
buckleyi Boulenger $1884=$ pachynema .
andicola Werner $1900=$ tentaeulata.
sabogae Barbour $1906=$ ochrocephala.
intermedia Boulenger $1913=$ nigricans .
palmeri Boulenger $1913=$ nigricans.
The following names are substitutes:
ibiara Daudin 1803 for tentaculata.
vermiformis Gray 1850 for gracilis.
I describe hereinafter seven forms in addition to the nine recognized above as valid, making a total of 16 forms.

The most recent systematic treatment of these species is that of Nieden in "Gymnophiona" (1913). This is based on previous work by Boulenger. As my treatment differs very considerably, I should explain why. In the first place Boulenger was able to examine very little material aside from that in the British Museum. This contained, in 1929, 54 specimens of Caecilia', seven of them being the types of described forms; I have been able to examine 324 specimens and the types of 15 described forms. In the second place, Boulenger lumped primaries and secondaries together into one count, and thus a Caecilia with many vertebrae and few scales would appear statistically similar to one with few vertebrae and many scales. By keeping these two independent variables separate, I arrive at results which are frequently different from Boulenger's.

Caecilia dunni Hershkovitz

1913. Caecilia intermedia Boulenger (in part, numbers 5-6), Proc. Zool. Soc. London, p. 1020.
1914. Caecilia nigricans Boulenger, 1. c., p. 1022 (not C. nigricans Boulenger 1902).
1915. Caecilia dunni Hershkovitz, Occ. Papers Mus. Zool. U. Michigan 370, p. 2, f. 1.

Type. Mus. Zool. U. Michigan S2901, collected by Philip Hershkovitz, Dec. 1935.

Type locality. Near Tena, Province of Napo-Pastaza (Oriente) Ecuador, 1700 feet above sea level.

Rangc. Atrato Valley, Colombia; Colombian Chocó; Cachabé, northwest Ecuador; Tena, Ecuadorian Oriente. Sea level to 1700 feet.

Diagnosis. A Caecilia with 123-150 primaries; 38-83 secondaries; $55-85$ primary folds without secondaries; $1 / \mathrm{d} 32 / 57$; eye visible in most specimens; no markings; length $147-450 \mathrm{~mm}$.

Description. The type has nine teeth in each of the long rows and two on each side in the inner mandibular row. The eye is invisible in the Cachabé specimen. There is some variation which may be geographic.

1	E. Ecuador
1	N. W. Ecuador
15	Colombian Chocó
2	Atrato Valley

Prim.	Sec.	$1 / \mathrm{d}$
123	67	35
123	38	41
$128-1.50$	$50-83$	$37-57$
$132-133$	$50-61$	$32-35$

With more material the form might be divided.
Rcmarls. This form is allied only to tentaculata, from which it differs in having a higher secondary count. C. tentaculata is absent from the Pacific slope and from the Atrato Valley, but apparently occurs with dunni in the Oriente of Ecuador.

BMNH 1913-11-12, 134 from Peña Lisa was "taken from the stomach of a Streptophorus atratus swallowed by an Elaps corallinus" (Boulenger 1913).

Specimens seen 19, as follows:
Colombia:
Las Animas Cr., Quito R.,
Atrato system, AMNH 13678
Quibdo on Atrato, Inst. La Salle
Anda Goya, BMNH 1915-10-21,

74	136	$80 / 11$	210	5.5	38
75	142	64	147	4	37
76	139	$63 / 20$	435	8	54
77	136	$77 / 26$	300	6	50
78	-	-	-	-	-
79	-	-	-	-	
$1916-4-25$,	31	131	$65 / 4$	409	9
32	454	$77 / 11$	375	9	41

Peña Lisa, Condoto, 300',

	prim.	sec.	length	am. 1/d
BMNH	1913-11-12, 134 146	67/8	280	$6 \quad 56$
	135150	83/10	270	54
	136147	62/8	395	57
	1914-5-21, 93129	54/5	240	40
Condoto, BMNH	1910-7-11, 73128	50/20	186	537
	74146	78/21	350	550
Ecuador:				
Cachabé, BMNH	98-3-1, 36123	38/6	290	41
Tena, U. Michigan	\$2901 123	$67 / 5$	450	13

CaECILIA TENTACULATA Linné

1758. Caecilia tertaculata Linné (except reference to pl. 5, f. 2, Mus. Adolph, Frid.) Syst. Nat. (10), p. 229; Shaw 1802, Gen. Zool. 3, 595; Latreille 1802, in Sonnini and Latreille, Hist Rept. 4, p. 237, pl. 22, f. 2; Cuvier 1817, Regn. Anim. 2, p. 87; Goldfuss 1820, Handb. Zool. 2, p. 138; Merrem 1820, Vers. Syst. Amph., p. 168; Cuvier 1829, Regn. Anim. (2), 2, p. 100; Gray 1831, in Griffith's Cuvier's Anim. King. 9, App., p. 110; Gray 1850, Cat. Batr. Grad. Brit, Mus., p. 58; Peters 1879, Mon. Berlin Ak., p. 934, f. 5; Boulenger 1882, Cat., Batr. Grad. Brit. Mus. (2), p. 93; Boulenger 1895, Proc. Zool. Soc. London, p. 406; Phisalix 1912, Congr. Int. Zool. 8 (Graz 1910), pl. 4, f. 3, 8, 11 (integ.); Nieden 1913, Gymnophiona, p. 12, f. 3, 4, 10.
1759. Caecilia lenticulata Tschudi, Mem. Soc. Sci. Neufchatel 2, p. 90 (typ. error)
1760. Caecilia albiventris Daudin, Nat. Hist. Rept. 7, p. 423, pl. 92, f. 2 (Surinam, type Paris 9); Cuvier 1829, Regn. Anim. (2), 2, p. 100; Gray 1831, in Griffith's Cuvier's Anim. King. 9, App,, p. 119; Duméril and Bibron, 1841, Erp. Gen. 8, p. 276, pl. 85, f. .3; Tschudi 1845, Faun. Peru. p. 80; Duméril 1863, Mem. Soc. Sci. Cherbourg 9, p. 313, pl. 1, f. 1, 9.
1761. Caccilia albiuentris Merrem, Syst. Amph., p. 169 (emendation).
1762. Caecilia ibiara Daudin, Nat. Hist. Rept. 7, p. 427 (substitute for tentaculata Linné).
1763. Caecilia isthmica Cope, Proc. Amer. Phil. Soc. 17, p. 91 (Atlantic side isthmus of Darien, type USNM 25188); Dunn 1928, Proc. New England Zoöl. Club 10, p. 73.
1764. Amphiumophis andicola Werner, Abh. Mus. Dresden (2), p. 14 (Chanchamayo, Peru, type Dresden 1689).

Type. Not known to exist.
Type locality. "America" $=$ Surinam (cf. Amoen. Acad. 1, p. 498, pl. 17, f. 1, Linné, 1749).

Range. Darien to Brazil and to eastern Peru. Sea level to 2800 feet.
Diagnosis. A Caecilia with 112-147 primaries; 12-37 secondaries; 79-133 primary folds without secondaries; eye usually visible; $1 / \mathrm{d}$ 22-52; length 126-1075 mm.; belly usually with white blotches.

Description. Boulenger (18S2) gives the dentition of the Shaw specimen as "teeth moderately large; on each side maxillaries 6 to S, vomero-palatines 5 , outer mandibulars 6 or 7 , inner mandibulars very small, few." The type of andicola has no inner mandibular teeth. The three specimens from Demarara and Mazaruni River have no visible eyes. White blotches are present on the bellies of most Guiana specimens irrespective of the primary count. The diagnosis above could have been made out entirely from Guiana specimens save for one more primary in a Colombian specimen, one less secondary in the type of isthmica, and for a stouter Ecuadorian specimen.

Remarlis. Linné first mentioned this form in 1749 (Amoen. Acad. 1, p. 498 , pl. 17, f. 1) as from Surinam and as having 135 rings. in 1754 (Mus. Adolph. Frid., p. 19) he abbreviates his 1749 description, and adds a figure (pl. 5, f. 2) of a much slimmer animal (gracilis of this paper). His 1758 description is very brief. In it he refers to his two previous papers, citing the former as page 459 , a mistake that has been widely copied.

There is a rather wide range of variation, and possibly this species is composite, especially as the Guiana specimens are easily separable into two sets. I therefore list possible divisions.

1. low primary, low secondary, stout.
$116 \quad 14 \quad 1 / \mathrm{d} \quad 35$ A single Colombian.
2. low primary, high secondary, stout.

$$
112-129 \quad 24-37 \quad 22-39
$$

3. high primary, low secondary, stout.

$$
131-147 \quad 12-21 \quad 28-31
$$

First numbers in each case are the Panamanian type of isthmica; second numbers a Colombian specimen.
4. high primary, low secondary, slim.

130-146 $\quad 13-15 \quad 44-52 \quad$ This includes three Guiana specimens and the Brazilian one. The type of tentaculata probably belonged here.
5. high primary, high secondary, slim.
$146 \quad 29 \quad 40$
A single Colombian specimen.

2 and 4 occur together in Guiana; 1 and 3 occur together in northern Colombia; 2 and 5 occur together in the Colombian Oriente. Additional material may in time afford some clarification of this puzzle, but I do not wish to divide the $2 \overline{7}$ specimens into five species under the existing conditions of knowledge.

The series as a whole has fewer secondaries than dumni, and more secondaries than the guntheri-degenerata-caribea-abitaguac series which, with tentaculata, comprise those Caecilia with less than 151 primaries. C. tentaculata occurs with degenerata at Garagoa in the Colombian Oriente, near dumni aod abitaguae in the Ecuadorian Oriente, and near caribea in northern Colombia.

Specimens seen, 27, as follows:
Panamá:
prim. sec. length diam. $1 / \mathrm{d}$
Atlantic side Darien
USNM 25188 $131 \quad 12 / 0 \quad 570 \quad 20 \quad 28$

Colombia:

Rio Frio	MCZ	17376	147	$21 / 0$	330	8	31
Sabana arga	AMNH	14032	116	14	430	15	38
Garagoa	MCZ	17384	146	$29 / 0$	260	6.5	40
Pto. Asís, R. Putomayo Inst. La Salle		113	$31 / 0$	470	15	31	

British Guiana:

Marudi Mts.	AMNH	49470	121	37	126	4	31
	49471	121	26	145	5	29	
		49472	120	33	135	5	27
		49473	120	34	140	5	28
		49474	119	34	128	4	32
		49475	115	29	442	13	34
do	do	49476	119	27	205	7	29
Demarara	BMNH						
	$8-9-30,16$		136	$13 / 3$	313	6	52

prim. sec. length diam. $1 / \mathrm{d}$

| Kamakusa AMNH | 49962 | 112 | 33 | 500 | 15 | 33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}\text { Nazaruni R. AMNH } & 20079 & 146 & 15 / 5 & 307 & 7 & 44\end{array}$ $\begin{array}{llllll}20080 & 146 & 13 / 5 & 340 & 7 & 48\end{array}$
Dutch Guiana:

Surinam	Paris	9	120	29	600	18	33
do	BANH						
	$58-6-1$,	36	120	$24 / 4$	350	10	35

Brazil:
$\begin{array}{lllllll}\text { No data } & \text { Hamburg } 1717 & 130 & 15 / 8 & 502 & 11 & 46\end{array}$
Eastern Ecuador:
$\begin{array}{lllllll}\text { Tuvola, } 2800^{\prime} & \text { AMNH } 23421 & 115 & 29 / 0 & 275 & 9 & 30\end{array}$
$\begin{array}{lllllll}\text { Copatava R. AMNH } 49961 & 122 & 29 / 2 & 640 & 18 & 35\end{array}$
$\begin{array}{lllllll}\text { Rio Suno 300' } & \text { Mich. } & 121 & 32 / 5 & 155 & 7 & 22\end{array}$
$\begin{array}{lllllllll}\text { No data } & \text { Mich. } & S 9459 & 121 & 33 / 4 & 1075 & 30 & 36\end{array}$
Eastern Peru:
$\begin{array}{llllllll}\text { Chanchamayo } & \text { Dresden } & 1689 & 129 & 28 / 4 & 350 & 9 & 39\end{array}$
Monte Alegre, R. Pachitea
$\begin{array}{lllllll}750-1000^{\prime} & \text { AMNH 42855 } & 120 & 31 / 2 & 365 & 10 & 36\end{array}$
South America:

No data		B	$B e r l i n$	3901	115	$31 / 4$	565

No data:
Shaw coll. BMNH

$$
1929-5-16,1 \quad 114 \quad 28 / 4 \quad 510 \quad 19 \quad 27
$$

Tschudi (1845) records tentaculata from Vitoc in middle Peru. He says that the young have gill slits.

The measurement of length in the giant Ecuadorian specimen is purely approximate. It could be stretched to 960 mm .; using a string it measured 1190 mm .

Caecilia degenerata spec. nov.

Type. MCZ 17384.
Type locality. Garagoa, eastern Colombia.
Range. Eastern Colombia.
Diagnosis. A Caecilia without secondaries; primaries 125-139; 1/d 31-76; length 132-555 mm.

Description. The primaries have been counted in 4δ specimens. Of these 35 came from either Choachi or Tomaque, nearby localities in the

Oriente of Colombia. The range of these 35 is 128-139, and only three specimens are outside the range of $130-138$. Specimens from elsewhere have similar counts except the Rio de Pache specimen with 125 primaries. The primaries are interrupted dorsally and ventrally (AMNH 22584-6, 22558-92).

The length-diameter ratio has been computed for 51 specimens. The range is $31-76$ in 40 Choachi and Tomaque specimens. The larger animals seem to be slightly slimmer, since for the same 40 specimens the highest ratio below a length of 300 mm . is 45 , and the lowest above a length of 400 mm . is 37 . For these two places the four ratios above 60 are for animals of 362 mm . long and over, and the ratios below 35 are for animals of 300 mm . long and under. The Rio de Pache specimens is in contrast to this with a ratio of 31 (as stout as any) and a length of 525 mm .

The Rio de Pache specimen has yellow spotting laterally; 5-6 maxillary-premaxillary teeth on a side; 9 palatine teeth; 8 left mandibular teeth with the four first enlarged; 6 right mandibular teeth with the two first enlarged; 3-4 inner mandibular teeth; the eye definitely visible. A Choachi specimen has two inner mandibular teeth.

Remarks. The large series from Choachi and Tomaque, in the American Museum, gives the range of variation and the characters. The specimens from "Colombia," "Bogotá," and Garagoa are within this range of variation.

The specimen from Rio de Pache is so close in primary count that it is best placed here. I have not been able to place the locality. It was from one of Eigenmann's collections, and no data save "Rio de Pache, Porte" were with it. The University of Michigan staff, Dr. Barbour, Dr. Chapman, and myself, have been unable to find the Rio de Pache, Porte. Barbour suggested that it is Lima, near Peru, which would complicate the situation considerably.

Scales are definitely not present in the Garagoa specimen, the Rio de Pache specimen, AMNH 23355 from Colombia, the La Salle one from Choachi, and AMNH 23270 from Choachi. They are present in AMNH 23271 from Choachi.

Specimens seen, 63, as follows:
Colombia:
Choachi
prim.

AMLNH	23259	131
23260	132	
23261	133	

length diam. $1 / \mathrm{d}$

384	9	42
326	9	36
400	10	40

			prim.	length	diam. 1/d
Choachi	AMNH	23262	-	398	$8 \quad 50$
		23263	136	425	$8 \quad 54$
		23264	-	-	
"	"	23265	-	443	855
		23266	-	415	$10 \quad 41$
		23267	131	441	$9 \quad 49$
"	"	23268	-	378	942
		23269	-	-	- --
Choachi	AMNH	23270	--	--	- -
		23271	-	-	- -
		23272	134	451	$8 \quad 58$
،	"	23273	138	367	$10 \quad 37$
		23274	131	360	$10 \quad 36$
Choachi, Inst. La Salle			135	390	849
Choachi and					
Tomaque	AMNH	22560	138	-	- -
		22561	-	-	- -
		22562	-	-	-
،	"	22563	139	512	1146
		22564	133	550	$13 \quad 42$
		22565	-	-	- -
،	"	22566	136	466	$12 \quad 39$
		22567	138	450	$12 \quad 37$
		22568	136	467	858
"	"	22569	-	406	945
		22570	130	380	S 47
		22571	136	433	$8 \quad 54$
"	"	22572	135	153	$5 \quad 31$
		22573	134	260	$7 \quad 37$
		22574	129	400	$9 \quad 4$
"	"	22575	130	321	840
		22576	137	455	$6 \quad 76$
		22574	130	132	433
"	"	22578	134	365	845
"	"	22579	135	213	$6 \quad 35$
		22580	-	420	760
		22581	131	408	$851{ }^{\circ}$
		22582	-	-	- -

Caecilia abitaguae spec. nov.
Type. Mus. Univ. Michigan 89930.
Type locality. Abitagua, Oriente, Ecuador, 1100 m . elevation.
Range. Known only from type locality.
Diagnosis. A Caecilia with 139-150 primaries; secondaries 5-6; $1 / \mathrm{d} 43-59$; length $300-1200 \mathrm{~mm}$.; eye visible; no markings.

Description. Nothing of importance can be added to the diagnosis and the characters of the individual specimens.

Remarls. This form is close to degenerata of the Colombian Oriente, but these Ecuadorian specimens have a higher primary count, and all three have a few secondaries. It is also related to C. guntheri of western Ecuador, but has a much higher primary count, and is somewhat
slimmer. It is extremely similar to C. caribea of northern Colombia, differing only in having secondaries.

It occurs with C. tentaculata in the Oriente of Ecuador, but tentaculata has at least 17 fewer primaries and 23 more secondaries in the region where the two are together.

Specimens seen, 3, as follows:
Ecuador, Oriente:
prim. sec. length diam. $1 / \mathrm{d}$

Abitagua	Mich.	89929	150	6	1200	22	59
$"$	$"$	89930	145	6	780	18	55
$"$	Stanford	5061	139	5	300	8	43

Caecilia caribea spec. nov.
Type. MCZ 24520.
Type locality. Pensilvania (Cauca valley south of Medellin), Colombia.

Range. Known only from type locality and from Barranquilla, Colombia.

Diagnosis. A Caecilia with 145-146 primaries; no secondaries; eye visible; 1/d 53-55; no distinctive markings; length $390-585 \mathrm{~mm}$.

Description. Nothing can be added to the diagnosis and the characters of the individual specimens.

Remarks. This form is similar to degenerata of the Colombian Oriente, to abitaguae of the Ecuadorian Oriente, and to guntheri of the Atrato valley and the Pacific coast. Strangely enough, it is most similar to abitaguae, differing only in lacking secondaries. It has a higher primary count than degenerata and a much higher one than guntheri.
C. caribea occurs with C. tentaculata in northern Colombia, but tentaculata there has 14-21 secondaries and a length-diameter ratio of 31-38.

Specimens seen, 2, as follows:
Colombia:
$\begin{array}{llllll}\text { Pensilvania } & \text { MCZ } & 24520 & 145 & 390 & 7 \\ 55 \\ \text { Barranquilla Senckenberg } & 3095 \mathrm{a} & 146 & 585 & 11 & 53\end{array}$

Caecilia quntheri Peters

1859. Caecilia rostrata Günther, Proc. Zool. Soc. London, p. 417 (not Caecilia rostrata Cuvier $=$ Hypogeophis rostratus).
1860. Caecilia guntheri Peters, Mon. Berlin Ak., p. 936 (substitute name).
1861. ?Caecilia pachynema Boulenger, Bull. Soc. Zool. France 5, p. 48 (two specimens in Brussels from "Andes of Ecuador," not C. pachynema Günther).
1862. Caecilia isthmica Boulenger (at least in part) Cat. Batr. Grad. Brit. Mus. (2), p. 94, pl. 6, f. 1 (not Caecilia isthmica Cope); Boulenger 1895 Proc. Zool. Soc. London, p. 406; Boulenger 1913, Proc. Zool. Soc. London, p. 1020.

Type. BMNH 60-6-16, 5 S .
Type locality. West Ecuador.
Range. Western Ecuador and western Colombia. The Atrato Valley, Colombia.

Diagnosis. A Caecilia with primaries 110-119; secondaries $0-8$; $1 / \mathrm{d} 2 \overline{7}-31$; eye visible; no markings; 260-630 mm.

Description. "Teeth moderately large, on each side. maxillaries 11, vomero-palatines 5 , outer mandibulars S; inner mandibulars very small, few" (Boulenger 18S2). The Urrao specimen has 3 inner mandibular teeth. Mr. H. W. Parker kindly informs me that both the Peña Lisa specimens have scales; the Urrao specimen has none.

Remarks. The two Brussels specimens, first called pachynema and then isthmica by Boulenger, have not been seen by me. They are probably what is here called güntheri. They had 119 and 124 "circular folds." The largest was 750 mm . long. They had 6 maxillary, $6-7$ palatine, and 5-7 mandibular teeth.

This species is close to degenerata, having fewer primaries, and to tentaculata, having fewer secondaries. It does not occur with either.

Specimens seen, 4, as follows:
Colombia:
Peña Lisa, Condoto
$\begin{array}{llllll}\text { BMNH 1913-11-12, } 131 & 115 & 0 & 268 & 10 & 27\end{array}$
$\begin{array}{llllll}\text { BMNH 1913-11-12, } 132 & 110 & 0 & 330 & 12 & 27\end{array}$
Urrao on Atrato Inst. La Salle
West Ecuador:
BMNH 60-6-16, $85 \quad 118 \quad 8 \quad 630 \quad 20$

Caecilia subnigricans spec. nov.

Typc. ANSP 4821.
Type locality. Magdalena River, Colombia.
Range. Known only from type locality.
Diagnosis. A Caecilia with 154-161 primaries; 17-18 secondaries; 137-143 primary folds without secondaries; eye visible; 1/d 58-62; length $350-370 \mathrm{~mm}$.; no distinctive markings.

Description. Nothing can be added to the diagnosis.
Remarks. This form has fewer secondaries than nigricans and more primaries than tentaculata. It is anatomically between these two forms, neither of which occur in the Magdalena Valley, as nigricans is west of this area and tentaculata is east of it. It probably occupies the lower part of the valley, as the closely allied thompsoni, which has more primaries and more secondaries, is the only form known from the upper Magdalena.

Specimens seen, 2, as follows:

Colombia:
Magdalena River ANSP $4921 \quad 161$ 18/8 $\begin{array}{llllll}370 & 6 & 62\end{array}$

"،	"	4922	154	$17 / 4$	350	6	58

Typc. Mus. Nac. Brazil S32.
Typc locality. No data, probably Brazil.
Range. Unknown.
Diagnosis. A Caecilia with 185 primaries; 94 secondaries; 91 primary folds without secondaries; eye visible; $1 / \mathrm{d} 56$; length 390 mm .; no color markings.

Description. It may be added to the diagnosis that the diameter is 7 mm ., and that the last 12 of the secondaries are complete.

Remarks. This remarkable form has the hind half of the body with bony scales, and in that respect agrees with dumni. But the latter is a much shorter (123-150 primaries) form, and is usually stouter. In primary count and in proportions it falls close to nigricans, some specimens of which have the hind third of the body scaled. But nigricans has at most 62 secondaries and is a Pacific coast form, while armata may be presumed to be Brazilian. I offer the suggestion that the primitive scalation may have persisted at the eastern as well as the western periphery of the range of the genus. In this case the alliance might be
with another Brazilian Caecilia (gracilis), a species whose primary counts and proportions are also like those of armata. The only Brazilian gracilis has the highest secondary count (25) for that species.

It is a great pity that the specimen has no data, but its characters are such that it must be described as a new form.

Caecilia nigricans Boulenger

1902. Caecilia nigricans Boulenger, Ann. Mag. Nat. Hist. (7), 9, p. 51; Nieden 1913, Gymnophiona, p. 13.
1903. Caecilia intermedia Boulenger (in part, numbers 1-4), Proc. Zool. Soc. London, p. 1026, f. 174 (St. Javier, N. W. Ecuador, type BMNH 1907-3-29, 69); Parker 1926, Ann. Mag. Nat. Hist. (9), 17, p. 549.
1904. Caecilia palmeri Boulenger, 1. c., p. 1021, f. 175 (Novita, Rio San Juan, Colombia, type BMNH 1910-7-11, 72).
Type. BMNH 1901-3-29, S8.
Type locality. Rio Lita, 3000 feet, N. W. Ecuador or S. W. Colombia [$=$ Ecuador $]$.

Range. West coast of Colombia; Atrato valley, Colombia; Gorgona I.; west coast of Ecuador.

Diagnosis. A Caecilia with primaries 155-190; secondaries 28-62; 10S-13S primary folds without secondaries; eye visible; 1/d 37-66; length $147-9.50 \mathrm{~mm}$.; no distinctive markings.

Deseription. The specimens are uniform blackish. Boulenger (1902) says the type had 8 maxillary and 6 mandibular teeth. He says (1913) of the type of palmeri "dentition as in C. pachynema," and of the type of intermedia "outer mandibular teeth smaller than" pachynema, but his figures show larger teeth in intermedia than in palmeri. He also states that the snout of palmeri is like that of pachynema; and that of intermedia is more strongly projecting. His figures show palmeri with a more prominent snout than intermedia.

The intromittent organ of BMNH 1913-11-12, 133 is extruded and is " 10 mm . in length and terminates in a four-lobed 'glans' " (Boulenger 1913).

Remarks. The male just mentioned was "swallowed by an Elaps rosenbergii."

The types of Boulenger's three species, which I think synonymous, have:

prim.	sec.	$1 / \mathrm{d}$	
168	47	65	intermedia
174	43	58	palmeri
175	32	60	nigricans

C. palmeri and C. intermedia were described in the same publication. The only differences in the descriptions refer to minor discrepancies in dentition and snout shape, and these are directly contradicted by the figures. No comparison with Boulenger's earlier nigricans was given.

This form of the Pacific coast differs from subnigricans of the Magdalena valley in the much higher secondary count. It differs from thompsoni of the upper Magdalena in lower primary and higher secondary counts; and from the more eastern gracilis in lower primary and higher secondary counts.

Specimens seen, 19, as follows:
Colombia:
Quesada River, Atrato valles

AMNH	13679	190	52	850	15
57					

Anda Goya
BMNH 1916-4-25, $30 \quad 175 \quad 37 / 6 \quad 845 \quad 17 \quad 500^{\text {T }}$
Novita, R. San Juan
BMNH 1910-7-11, $72 \quad 174 \quad 43 / 6 \quad 700 \quad 12 \quad 58$
Peña Lisa, Condoto
BMNH

" " BMNH
1914-5-21, $91 \quad 159 \quad 40 \quad 625 \quad 11 \quad 57$
" " BMNH
1914-5-21, 92171
Gorgona I. BMNH
$1926-1-20,145 \quad 166 \quad 36 / 3 \quad 680 \quad 12.5 \quad 57$
$\begin{array}{lllllll}\text { Chocó, Inst. La Salle } & 188 & 37 / 10 & 147 & 4 & 37\end{array}$
No locality BMNH
1923-7-11, $72.2174 \quad 43 / 6 \quad 600 \quad 12.548$
$\begin{array}{lllllll}\text { " } & & \text { Hamburg } 384 & 172 & 33 / 0 & 638 & 11 \\ & 58\end{array}$
Ecuador:

Rio Lita	BMNH					
	$1901-3-29,88$	177	$32 / 7$	600	10	60
Manabi	AMNH $387-2$	166	$43 / 7$	485	10	48
Salidero	Vienna	173	$59 / 7$	455	7	65
St. Javier	"	180	$62 / 3$	800	12	66
"	BMNH	168	$47 / 8$	950	17	65
Pambelar	$"$	168	$28 / 8$	705	11	64

		prim.	sec.	length	diam. $1 /$ d	
Paramba	BMNH	166	$47 / \mathrm{S}$	640	14	46
"،	"،	155	$47 / 7$	820	19	42
Plaza d'Oro, Santiago						
	USNM	20590	162	$53 / 5$	930	20
			46			

Caecilia thompsoni Boulenger

1899. Caecilia gracilis Cope, Sci. Bull. Philadelphia Commer. Mus. 1, p. 8 (not Caecilia gracilis Shaw).
1900. Caecilia thompsoni Boulenger, Ann. Mag. Nat. Hist. (7), 10, p. 152; Nieden 1913, Gymnophiona, p. 14.
Type. BMNH 1902-5-15, 26.
Type locality. Villeta [between Honda and Bogotá], 3500', Colombia.
Range. Upper Magdalena valley and Rio Caquetá, Colombia.
Diagnosis. A Caecilia with primaries 1S8-23S; secondaries 29-41; 152-200 primary folds without secondaries; $1 / \mathrm{d} 45-92$; eye usually visible; no distinctive markings; length $345-1375 \mathrm{~mm}$.

Description. MCZ 9726 has S maxillary, 4 outer mandibular and 2 inner mandibular teeth. Boulenger (1902) says the type had "teeth very large in front, 6 or 7 on a side in upper jaw, 15 or 16 in lower, 14 vomero-palatines on each side, 8 small inner mandibular teeth," and "blackish speckled with yellow on the sides." The eye is invisible in the specimen from Muzo.

Counts taken on specimens from definite Magdalena valley localities are altered by others as follows: the La Esperanza specimen raises the secondary count from 39 to 41 , and lowers the difference between primary and secondary counts from 157 to 152 ; the Rio Caquetá specimen raises the $1 /$ d ratio from 79 to δt, and the specimen reported as gracilis (AMNH 49976) from "probably near Bogotá" raises it to 92.

Remarks. In each individual respect my diagnosis of thompsoni overlaps my diagnosis of bassleri, but all the specimens can be allocated by combining characters. It is distinguished from gracilis by higher secondary count, and from nigricans by higher primary count.

Boulenger measured the type as 1170 mm ., diameter 13. I measure it as 1000 mm ., diameter 15. Cope measured AMNH 49976 as 1300 mm . I measure it as 1375 mm . This is the largest American Caecilian.

Specimens seen, 10, as follows:

Colombia:
Yilleta
prim. sec. length diam. $1 / \mathrm{d}$
BMNH
$1902-5-15,26 \quad 192 \quad 29 / 0 \quad 1000 \quad 16 \begin{array}{r}62 \\ \text { TYPE }\end{array}$

The British Museum Rio Caquetá specimen seems to be this species but has confusing locality data. Additional information gives "Cauca Valley, S. E. Colombia, collected by Dr. M. D. Eder, purchased through Rosenberg." The Rio Caquetá is in southeast Colombia, is a tributary of the Amazon, is not an unlikely place for thompsoni as it heads near the head of the Magdalena, but it is not in the Cauca valley.

The Cauca valley has a Rio Cóqueta, but this is in northeast Colombia, and is a very unlikely place for thompsoni.

Caecilia gracilis Shaw

1758. Caccilia tentaculata Linné (in part, the reference to pl. 5, f. 2, Mus. Adolph. Frid.) Syst. Nat. (10), p. 229.
1759. Caccilia gracilis Shaw, Gen. Zool. 3, 2, p. 597 ; Gray 1850, Cat. Batr. Grad. Brit. Mus., p. 57; Dumeril 1863, Mem. Soc. Sci. Nat. Cherbourg 9, p. 313; Peters 1879, Mon. Ak. Berlin, p. 935; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 75; Nieden 1913, Gymnophiona, p. 13.
1760. Caecilia lombricoidaea Daudin, Hist. Nat. Rept. 7, p. 420, pl. 92, f. 2 (Surinam, types Paris 12); Dumeril and Bibron 1841, Erp. Gen. 8, p. 275 , pl. 85 , f. 2.
1761. Caecilia lumbricoides Merrem, Vers. Syst. Amph., p. 168 (emendation); Cuvier 1829, Regn. Anim. (2), p. 100; Gray 1831, in Griffith's Cuvier's Anim. King. 9, App., p. 110; Wiedersheim 1879, Anat. Gymn., pl. 2, f. 14, 19, 20, 22, pl. 6, f. 61, 65-7, pl. 7, f. 72-4, 76-9, 81, pl. 9, f. 89.
1762. Caecilia lumbricoidea Goldfuss, Handb. Zool. 2, p. 138 (emendation); Wagler 1830, Nat. Syst. Amph., p. 198; Tschudi 1838, Mem. Soc. Sci. Neufchatel 2, p. 90.
1763. Caecilia vermiformis Gray, Cat. Batr. Grad. Brit. Mus., p. 57 (MSS name of Shaw, quoted in synonymy of C. gracilis).

Type. Not known to exist. BMNH 1929-5-16, 2 is from the Shaw collection and was named by Dr. Shaw (Boulenger 1882, p. 75, spec. " g ") but does not agree with Shaw's measurements, which were $133 / 4$ " long and $1 / 3^{\prime \prime}$ in diameter. Since no type was named this may be a cotype.

Type locality. "America."
Range. The Guianas; Para, Brazil; Iquitos, Peru. Sea level to 500 feet.

Diagnosis. A Caecilia with primaries 185-214; secondaries S-25; $1 / \mathrm{d} 48-93$; eyes usually visible; no markings; length $165-680 \mathrm{~mm}$.

Description. The measurements show that this form becomes slimmer with age. BMNH $66-8-14,341$, the largest specimen, has the eye invisible but not covered by bone.

Data taken from Guianan specimens is altered by others as follows:
The primary count is raised from 207 to 214 by the Para specimen, and the secondary count is raised by it from 23 to 25 . The Vienna specimen from "S. Amer." lowers the secondary count from 9 to 8 .

Remarks. The Guiana population to which the name gracilis applies is abundantly distinct from any other Guiana form, but is very confusingly allied to some of the western forms of the genus.
C. thompsoni of the upper Magdalena is larger, and has more secondaries, but the primary counts overlap those of gracilis in the range 188-214.
C. bassleri of Ecuador and Peru overlaps gracilis in all the numerical counts (primaries from 206 to 214 , secondaries from 14 to $25,1 / \mathrm{d}$ from S5 to 93). On combining characters, all specimens can be placed in one of the two forms. The two occur together at Iquitos, Peru.
C. pachynema of Ecuador and Peru overlaps gracilis in all the numerical counts (primaries 185-199, secondaries $8-11,1 / \mathrm{d} 48-84$). I have seen seven specimens within this range of overlap in all counts. These can only be allocated on the basis of color (when present in pachyncma) and by locality.
C. polyzona of the Cauca Valley, has all its numerical counts within the range of those of gracilis. Specimens can be distinguished by color, by visibility of the eye, and by locality.
C. ochrocephala of Panamá and northwestern Colombia overlaps gracilis in all the numerical counts (primaries from 185 to 192, secondaries from S to $25,1 /$ d from 48 to 87). I have seen 26 specimens (S gracilis and 18 ochrocephala) within this range of overlap in all counts. These specimens have been allocated by color, by visibility of the eye, and by locality.

Specimens seen, 31, as follows:
British Guiana:

Dunoon	Michigan	47410	185	16	328	6	55
		47411	187	10	355	5	77
		47411	188	14	$\because 85$	5	57
		47411	192	13	200	4	50
		47411	197	9	165	3	55
		52507	187	14	321	6	53
Wismar	Michigan	76676	189	$10 / 3$	295	4.5	66
Maccasseema	BMNH						
	S\%-1-22, 30		199	$14 / 3$	330	5	66
Demarara	"		--	--	-	-	
No locality	USNM	58.50	204	11/3	245	5	49
Oronoque R. F		35116	198	16/5	278	3	93

Dutch Guiana:

Surinam	ANS	4923	207	$23 / 0$	440	5	SS
		4924	190	$12 / 4$	490	7	70
Surinam	BMNH						
	66-S-14, $3+1$		195	$2.2 / 9$	680	11	62
	70-3-10, 58		20.3	16/6	44	5	89
	70-3-10, 60		202	$17 / 5$	472	6	79
"	Berlin	5826	199	$15 / 2$	367	4	92
	Vienna		$\because 20$	-	16.5	3	55
	Munich		-	-	310	4	77
	MCZ	6637	201	$\underline{2} \cdot 10$	370	7.5	48
	Paris	12	197	-	405	5	S1
"	Paris	12	$\because 04$	- -	540	7	77

French Guiana:
Cayenne

Paris	12 b
$، 6$	12 c

Paris 12d
"Guiana":
Brazil:
Para
Vienna
$214 \quad 2.6 \quad 370$
$4 \quad 92$
Peru:
$\begin{array}{llllllll}\text { Iquitos } \quad \text { AMNH } 42851 & 188 & 21 / 8 & 390 & 7 & 56\end{array}$

South America:
No locality

AMNH	23658	190	$14 / 5$	398	6	66
BMNH						
1929-5-16, 2	184	$14 / 7$	500	6	83	
Berlin	3700	$197-$	$9 / 2$	500	6	83
Vienna		198	$8 / 4$	420	5	84

Caecilia bassleri spec. nov.

Type. MCZ 19401.
Type locality. Pastaza R., Ecuador (Canelos to Marañon).
Range. Eastern Colombia; eastern and western Ecuador, eastern Peru. Sea level to 500 feet.

Diagnosis. A Caecilia with primaries 206-285; secondaries 14-41; $1 / \mathrm{d}$ S0-160; 495-865 mm.; eyes visible or invisible.

Description. Uniform dark, head a little lighter. The eyes are invisible in AMNH 3874, in the Colombian specimen, and in IICZ 19401. Three have the $1 / \mathrm{d}$ below 105 . A single specimen has the primary count below 227. The other eight have the $1 /$ d over 104 (no other Caecilia has the $1 /$ d over 93) and primaries over 226 (no other Caecilia has a primary count above 217 , except the Panamanian elongata which has no secondaries and the Colombian thompsoni, which is stouter).

Remarks. Probably allied to thompsoni and to gracilis. Both gracilis and bassleri occur at Iquitos, Peru.

It is a pleasure to name this form, extreme alike in slimness and in number of vertebrae, for my friend Dr. Harvey Bassler, whose collection of Peruvian Caecilians included five of this species.

Specimens seen, 12, as follows:
Western Ecuador:
prim. sec. length diam. $1 / \mathrm{d}$
$\begin{array}{llllllll}\text { Rio Cayápas } & \text { AMNH } & 3874 & 206 & 32 / 13 & 725 & 6 & 121\end{array}$
St. Javier

No locality
Eastern Ecuador:
$\begin{array}{llllllll}\text { Rio Pastaza } & \text { MICZ } & 19401 & 271 & 41 / 8 & \$ 00 & 5 & 160\end{array}$
Canelos

BMNH

S0-12-8, $141 \quad 254 \quad 28 / 0 \quad 495 \quad 4 \quad 124$

Eastern Peru:
Iquitos AMNH 42852
Monte Carmelo, nr. Requena lower Ucayali AMNH 45327
Pampa Hermosa, mouth of Cushabatay, Mid. Ucayali

AMNH	42840	230	$28 / 9$	630	6	105
$"$.	42841	232	$30 / 6$	655	6	109

Chaquimayo, Carabaya
BMNH
1908-3-11,
Mouth Rio Santiago
$\begin{array}{llllll}\text { AMNH } & 42832 & 234 & 17 & 640 & 8 \\ 80\end{array}$
prim. sec. length diam. 1/d

285	$17 / 0$	865	7	124
257	25	840	7	120

AMNH 42832

Eastern Colombia:
Rio Putumayo, Punto Asïs
$\begin{array}{llllll}\text { Inst. La Salle } & 244 & 25 / 6 & 800 & 10 & 80\end{array}$

Caecilia ochrocephala Cope
1866. Caecilia ochrocephala Cope, Proc. Acad. Nat. Sci. Philadelphia 18, p. 132; Peters 1879, Mon. Ak. Berlin, p. 935; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 94; Brocehi 1883, Miss. Sci. Mex., Batr., p. 119, pl. 21, f. 1; Dunn 1931; Occ. Papers Boston Soc. Nat. Hist. 5, p. 408.
1885. Herpele ochrocephala Cope, Proc. Amer. Phil. Soc. 22, p. 171; 1885, Proc. Amer. Phil. Soc. 23, p. 279; 1887, Bull. U. S. Nat. Mus. 32, p. 9; Boulenger 1895, Proc. Zool. Soc. London, p. 409; Günther 1902, Biol. Centr. Amer., Rept., p. 307; Nieden 1913 (in part) Gymnophiona, p. 20; Dunn 1928, Proc. New England Zoöl. Club 10, p. 73.
1876. Caecilia gracilis Garman, Proc. Boston. Soc. Nat. Hist. 18, 412.
1906. Caecilia sabogae Barbour, Bull. Mus. Comp. Zoöl. 46, p. 228 (Saboga Island, Panamá. Types MCZ 2425).

Type. USND 29764 , collected by Gallaer and LeConte.
Type locality. Atlantic side Isthmus of Darien.
Range. Province of Coclé, Panamá to Turbo, Colombia. Sea level to 2000 feet.

Diagnosis. A Caecilia with 171-192 primaries; 7-29 secondaries; 149-179 primary folds without secondaries; eyes invisible; pale gray, with black primary grooves; $1 / \mathrm{d} 39-87$; length $151-610 \mathrm{~mm}$.

Description. The eyes are invisible in all specimens seen. Nearly all specimens are colored as Cope described the type, "yellowish plumbeous. The plicae dark; head and throat ochre yellow." A specimen from Panamá Sabanas in the MCZ is pale and uniform; USNM 52486 from "Panamá" has paired light dorsolateral spots on each segment, thus resembling C. pachynema in color.

Outer mandibular teeth S-9 on a side, inner 3-4, maxillary teeth $7-9$ on a side; palatine teeth $10-13$ on a side.

The range of variation in primary and secondary count found in 71 Canal Zone specimens is slightly exceeded by one from Cana which raises the primary count from 159 to 190; by one from San Miguel Island which raises the primary count to 192 ; by the type and the Cana specimen which raise the secondary count from 28 to 29 .

Of 100 primary counts, 89 are from $174-188$, six are below this range and five above. Of 98 secondary counts, $\$ 3$ are from $10-25$, seven are below this and eight above. Of $941 / \mathrm{d}$ ratios, 84 are from $41-65$, four are 39-40, six (four in one lot and poorly preserved) are 66-87.

Remarks. C. ochroccphala has been taken in excavations on Barro Colorado Island at a depth of some ten feet below the surface.

In 1928 I reported finding eggs 3 mm . in diameter in a female, four on the right side and five on the left.
C. ochrocephala is similar to C. polyzona of the Cauca valley in color and in condition of the eye, but has a lower primary count.
C. ochroccphale is similar to C. gracilis of Guiana, Brazil and eastern Peru in numerical counts ($\$$ gracilis and 18 ochrocephala fit in the region of overlap of the three counts), but differs in color and in condition of eye.
C. ochroccphala is also similar to C. pachynema of Colombia, Ecuador and Peru in numerical counts (6 pachynema and 19 ochrocephala fit in the region of overlapping of all three counts; primaries $171-192$, secondaries $7-11,1 / \mathrm{d} 40-84$). It differs from pachynema in color (usually) and in condition of eye.

Specimens seen, 101, as follows:
Panamá Canal Zone:

Fort Sherman MICZ	9610	183	$10 / \mathbf{2}$	$3 S 2$	9	42
		10665	176	$13 / 0$	233	6
39						
	10671	173	$22 / 1$	610	12	51
Cristobol Iowa State		174	$15 / 0$	250	5	50

prim，sec．length diam． $1 / \mathrm{d}$

Gatun	AMNH	6644	17 S	$21 / 4$	414	7	59
	11C\％	9589	176	$23 / 5$	490	－	－
		9590	183	16／0	410	7	580
		9591	153	12／0	402	S	50
		9592	173	18／0	430	10	43
		9593	175	$23 / 3$	35.5	9	39
		9.594	179	15／3	350	S	45
،	＂	9595	181	29／3	325	7	46
San Pablo	MCZ	1306	183	$24 / 4$	242	5	48
	AMNH	18670	184	10／0	310	6	51
Gorgona	MCZ	1493	175	$23 / 3$	375	7	53
Monte Lirio	IICZ	14816	171	$20 / 2$	515	10	51
Chagres River Indio on Chagr	MCZ	16289	182	$\because 6 / 4$	285	6	64
	［SNM	102850	184	$16 / 4$	211	4	53
Barro Colorado	I．						
	MCZ	11855	173	1S／2	375	7	53
		11856	172	$23 / 2$	310	7	44
Majagual	،	10672	174	$20 / 2$	352	7	54
		10673	175	$25 / 5$	244	6	41
		10674	179	$25 / 5$	328	7	47
Summit Lindsay coll．				－	－	－	－
Albrook Field F	E．R．Dumn	coll．	155	17／0	261	6	43
			186	8／S	302	6	50
	6		182	13／0	294	6	49
Corozal	Carnegie	S698	184	$13 / 3$	335	6	56
	．．	S699	179	10／0	340	7	49
－	MCZ	16290	185	12／3	370	7	53
．．	．．	16291	179	12／3	36.5	7	52
		16292	17	12／0	330	6	55
		16293	182	16／0	32S	6	55
		16294	175	17／0	248	5	50
		16295	186	$12 / 2$	35.5	6	59
		16296	185	10／0	350	7	50
		16297	185	$13 / 4$	320	6	53
		16298	185	$9 / 0$	205	\pm	52
＂	＂	17SSS	184	$9 / 0$	390	S	49
Fort Clayton	USNXI	$65 \$ 45$	186	10／1	400	7	57
	－•	65546	151	2S／1	390	7	56

Fort Clayton	MCZ		prim.	sec.	length	diam.	1/d
		14821	177	19/3	291	6	48
		14822	179	$11 / 3$	354	6	59
		14823	183	$17 / 5$	395	7	56
		14824	179	S/0	360	7	51
		14825	175	$7 / 1$	344	S	43
		14826	179	12/0	265	5	5.3
		14827	183	$21 / 3$	436	7.5	58
		14828	176	$17 / 0$	308	7	44
		1483.3	18.5	17/0	262	5	52
		14834	18.5	$25 / 0$	190	4	47
		14835	188	$9 / 1$	260	4	65
		14836	183	17/0	210	4	52
		14837	183	$13 / 3$	151	3	50
		14838	184	19/0	290	5	58
		15721	180	22/3	295	6	49
'	'	15722	184	$24 / 5$	258	5	52
Balboa Carnegie		S490	184	$24 / 4$	457	8	578
		8491	181	$20 / 4$	356	6	59
Ancon	MCZ	S600	173	14/0	545	12	45
		10675	178	19/2	3 S 2	7	54
		14817	189	$27 / 5$	525	8	66
		14818	180	17/4	435	5	S7
		14819	178	$20 / 3$	472	7	67
Ancon	MCZ	14820	183	$23 / 2$	522	7	75
	BMNH						
	1926-1	0, 72	17%	$16 / 3$	350	7	50
Ancon or Balboa							
	MCZ	14829	183	$25 / 4$	420	10	42
Madden Dam	ANS	21825	185	$16 / 3$	325	5.5	59
		21826	183	$26 / 4$	335	5	67
"Canal Zone"	CSNM	37857	189	$17 / 2$	428	7	61
		37858	182	11/3	407	S	51
Panamá							
Rio Grande to Rio Coclé,							
Nombre de Dios							
	MCZ	14832	182	10/0	290	7	41
Panamá City	,	4268	181	15/0	331	9	46
		15719	183	10/0	410	-	-
		15720	180	$21 / 3$	450	11	41

Panamá－Sabanas MCZ			prim．	sec．	length	diam．	1／d
			177	10／0	370	9	44
			179	15／0	352	8	53
－	＂		178	S， 0	420	S	40
Saboga I．	＂	2425	181	24／4	375	6	50
．．	＂	2425	181	11／3		－	
San Miguel I．	＂	2503	192	21／4	470	11	43
Cañ，2000＇	［SNM	50249	190	29／2	490	10	49
Atlantic side Darien							
	LSNM	28185	180	10／2	420	6	70
،	USNM	29764	185	$29 / 2$	330	6.5	50
Darien Isthmus	Vienna		175	－	－－	－	－
＂	．،		189	－	－	－	－
＂Panamá＂	Paris 7 alpha		184	21	－	－	－
	BMNH						
	S－12－12， 1		182	18， 2	531	10	53
	BMNH						
	$94-5-9,6$		185	$\underline{-214}$	450	9	50
	LSNM	14116	181	205	428	S	53
	＂	52495	185	$27 / 3$	5.50	10	55
	＂	52496	185	12／4	505	11	460^{7}
	＂	52497	180	18／5	480	9	53
	＂		181	10／3	490	12	41
	MCZ	$15: 1$	187	$23 / 0$	535	10	53
	＂	،	178	19／4	355	－	－
	ANS	4919	185	12／2	425	7	60
	MC\％	2502	155	$20 / 5$	432	7	61
Colombia ：							
Turbo	MCZ	1492	185	23／3	355	7	50
＂Brazil＂	\1CZ		18S	10／0	495	9	55

（AECllia polyzona Fischer
1879．Caecilia polyzona Fischer，in Peters，Mon．Berlin Ak．，p．936；Fischer 1880，Arch．Naturg．46，1，p．215，pl．8，f．1－4；Boulenger 1882，Cat． Batr．Grad．Brit．Mus．（2），p． 94 ；1895，Proc．Zool．Soc．London． p． 407.
1913．Herpele ochrocephala Nieden（in part），Gymnophinna，p． 20.

Type. Originally two specimens in the Berlin Museum, collected by Grosskopf. One is now AㄱNH 23449 , the whereabouts of the other is not known.

Type locality. Caceres, Prov. Antioquia, Colombia.
Range. Cauca Yalley, Colombia.
Diagnosis. A Caecilia with 201-209 primaries; 10-17 secondaries; 1/d 43-67; eyes invisible; "brownish gray", head little lighter, grooves black, light gray below"; length $560-670 \mathrm{~mm}$.

Description. Fischer (18S0) gives a count of the dentition which apparently includes the teeth of both sides; 22-25 maxillary; 20-22 vomerine; 20 outer mandibular; 10-12 inner mandibular. The missing type had 209 primaries, 10 secondaries, $1 / \mathrm{d} 59$, and was 650 mm . long.

Remarks. C. polyzona is very close to ochrocfphala, the only difference being the higher primary count.

Specimens seen, 2, as follows:

Colombia:
$\begin{array}{lllllll}\text { Cauca Valley Vienna } & 204 & 17 / 0 & 560 & 13 & 43\end{array}$
$\begin{array}{llllllll}\text { Caceres } & A \lambda I N H & 23449 & 207 & 12 & 670 & 10 & 67\end{array}$

Cabcilia pachivema Günther

1859. Caecilia pachynema Günther, Proc. Zool. Soc. London, p. 417; Cope 1868, Proc. Acad. Nat. Sci. Philadelphia, p. 118; Peters 1879, Mem.

- Ak. Berlin, p. 935; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 95 , pl. 6, f. 2; 1895, Proc. Zool. Soc. London, p. 407; Nieden 1913, Gymnophiona, p. 13; Parker 1934, Ann. Mag. Nat. Hist. (10), 14, p. 265.

1884. Caecilia buckleyi Boulenger, Ann. Mag. Nat. Hist. (5), 13, p. 398 (Intac, Ecuador, type BMNH 7S-1-25, 47); 1895, Proc. Zool. Soc. London, p. 407, pl. 23, f. 1; Nieden 1913, Gymnophiona, p. 13.

Type. BMLNH 66-6-16, S_{7}, collected by Fraser.
Type locality. Western Ecuador.
Range. Colombia; Ecuador; Peru. Sea level to 6200 feet.
Diagnosis. A Caecilia with primaries 154-199; secondaries 0-11; $1 / \mathrm{d} 38-84$; eyes visible; usually with a lateral yellow spot on each segment; length $145-900 \mathrm{~mm}$.

Description. MCZ 162SS has 6 maxillary teeth, 4 palatine teeth, 4 large mandibular teeth, and 1 inner mandibular tooth. Günther (1859)
says that the type has " 5 hook-like teeth on each side, the anterior larger, three palatal teeth." Boulenger (1882) says of the same specimen "teeth large, few, widely separated; inner mandibulars very small few;, outer mandibulars very large, anterior largest, 5 ; maxillaries 6 ; vomeropalatines 9." Cope (1868) says that two specimens from Guayaquil had S maxillary teeth, 6 mandibulars, and 5 palatine. The type of buckleyi had (Boulenger 1SS4) "maxillary teeth large, 10 on each side. Vomeropalatines S on each side. Inner mandibulars small, few. Outer large- 9 on each side."

All specimens with secondaries have scales. Those without secondaries have scales or lack them in about equal numbers (cf. Parker 1934).

No scales, 6: Zamora; type pachynema; type buckleyi; Normandia, Villavicencio; Medina Mts.

Scales, 4: Milligalli, Intac (2), Pallatanga.
Colombian specimens lower the Ecuadorian primary range from 160 to 159 and 154 , and lower the $1 /$ d ratio from 40 to 35 ; Peruvian specimens raise the Ecuadorian primary range from 192 to 194 and 199, and raise the Ecuadorian secondary count from 10 to 11.

The primaries are usually interrupted dorsally and ventrally. Most specimens have a large yellow spot on each side of each segment.

Remarks. Two specimens in the Berlin Museum (3716 and 3722) from Guayaquil are labeled as types of C. guntheri Peters. This is incorrect as the type of guntheri Peters (a substitute name for C. rostrata Günther, not C. rostrata Cuvier which is now called Hypogeophis rostratus) is BMNH 60-6-16, 85 , the specimen erroneously called C. rostrata by Günther.

The type of C. buckleyi Boulenger seems to me a very young specimen of pachynema, which is stouter than larger individuals. A' still smaller individual from Colombia is even stouter.

Specimens with primaries $185-199$, secondaries S-11, and $1 / \mathrm{d} 49-$ S4 fit into the diagnostic counts of both pachynema and gracilis, and have been allocated by color and by locality.

Specimens with secondaries $7-11$ agree in almost all counts with ochroeephala. These have been allocated on color, condition of eye, and locality.

This species occurs on both sides of the Andes, but is known to reach an altitude of 6200 feet at Milligalli (record altitude for an American Caecilian) and, if the Quito locality is correct, which I doubt, it reaches 9274 feet.

Specimens seen, 25 , as follows:

Colombia: Medellin			prim.	sec.	length diam. $1 / \mathrm{d}$		
	ANS	12980	159	2	519	10	52
	AMNH	49973	166	7	467	6	78
Villavicencio	$\begin{array}{llllll}\text { Inst. La Salle } & 180 & 0 & 270 & 5 & 54 \\ \text { N. E. Villavicencio } & & & \\ \text { I. }\end{array}$						
Medina Mts.							
	AMNH	49959	156	0	145		S
No data	MC\%	16288	154	0	900	15	60

Ecuador:

Milligalli, 6200^{\prime} BMNH
S.5-2-23, $14 \quad 164 \quad 0 \quad 820 \quad 12 \quad 68$

Pallatanga, 5000^{\prime}
$\begin{array}{lllllll}\text { AMNH } & 16986 & 160 & 0 & 630 & 12 & 52\end{array}$
Normandia, Zunia, Upana R.,
$1400-1800 \mathrm{~m}$. AMNH $\quad 23434 \quad 174 \quad 0 \quad 726$
"Western Ec." BMNH

	$66-6-16,87$	168	0	468	7	66
No data	Munich $148 / 1912$	169	0	550	12	46
"،	Vienna	192	10	375	6	62

Peru:

No data	Vienna	169	$11 / 0$	415	7	59
$" ،$	$"$	194	0	410	6	68
$"$	$"$		199	0	385	6
64						
$" ،$	A.NS	16129	165	$11 / 0$	211	3
70						
o data:	Smith College	190	2	485	8	60

Parker (1934) has recorded pachynema from Zamora, Ecuador, 3250 feet, a locality which is like Normandia, on the east face of the Andes.

CaEcilla elongata spec. nov.

Type. Munich 1327/0.
Type locality. Panamá.
Range. Known only from Yavisa, Darien, Panamá.
Diagnosis. A Caecilia without secondaries; primaries 226-231; 1/d S3-S9; no scales; eve invisible; no markings; $500-620 \mathrm{~mm}$.

Remarks. The high primary count and the complete absence of secondaries render this form quite distinct. The head-and-neck from Yavisa looks quite different from oehroeephala.

Specimens seen, 3 ,as follows:

Panamá:
Yavisa MCZ (head and neck only) - - - -

No locality	Munich $1327 / 0$		226	620	\bar{c}	59
	"	$1324 / 0$	231	500	6	53

Chthonerpeton Peters

1879. Chthonerpeton Peters, Mon. Berlin Ak., p. 930, 940 (monotype Siphonops indistinctus Reinhardt and Lütken).

Diagnosis. Caecilians without secondaries or scales; no tail; tentacle in a horseshoe-shaped groove, on side of head between eve and nostril; eyes visible; two rows of teeth in lower jaw; anus usually a well developed sucking disk; primaries $76-166 ; 1 / \mathrm{d} 23-57$; length $170-620 \mathrm{~mm}$.; three species.

Range. Argentina, Uruguay and Brazil.

Key to species of Chthonerpeton

A. Primaries $76-87$; (anal disk large; tentacle slightly nearer nostril than eye); Argentina, Uruguay, and southern Brazil indistinetum AA. Primaries 133-166.
B. Tentacle very close to nostril; anal disk medium; 145 primaries; upper Amazon . petersi
BB. Tentacle nearer eye than nostril; anal disk small; 133-166 primaries; southern Brazil......................... . riviparum.

Remarks. In number of primaries and size of anal disk indistinetum is at one extreme of the genus and resembles the closely allied forms of
the more northern genus Typhlonectes. In position of the tentacle, however, petersi is extreme and in this character it is the closest to Typhlonectes.

I have examined 39 specimens, including the types of viviparum and petersii. I have not seen the type of indistinctum.

Chthonerpeton viviparuas Parker and Wettstein

1907. Siphonops braziliensis (non Lŭtken) Vávra, Vesmír, Prag, 36, 1, p. 11, f. 10 (not seen); Nieden 1913 (in part) Gymnophiona, p. 25.
1908. Chthonerpeton viviparum Parker and Wettstẹin, Ann. Mag. Nat. Hist. (10) 4, p. 594.

Type. BMNH 1907-S-28, 1.
Type locality. State of Santa Catharina, Brazil.
Range. States of Santa Catharina and São Paulo, Brazil.
Diagnosis. A Chthonerpeton with 133-166 primaries; tentacle nearer eye than nostril; anal disk small; $1 / \mathrm{d} 36-57$; 170-510 mm.

Description. (Original from type, cight from Joinville in Vienna Museum and one without data in Vienna. I have seen only the type) "primaries "143-144 and 147-149," "possibly sexual females lower" [of my four additional one has 133 and one 166, so that the range is $133-166$]; "largest 404,339 , and $333, \mathrm{~mm}$., with diameters of 8,8 , and 7.5 mm . respectively; a half-grown specimen 170 mm diameter $4,5 \mathrm{~mm}$." These figures indicate $1 /$ d ratios of $51,42,44$, and 36 respectively ; the range of specimens I have seen being $37-57$. Obviously the older are slimmer. "Tentacle nearer the eye than the nostril, and a little below the straight line connecting these two"; "premaxilla and maxilla 12-13 a side; palatopterygoid $9-10$ a side; mandible, outer row 11-12, inner row 3-4"; "greyish-olive with a purplish tinge"; embryo with a "single pair of plate-like gills which are closely apposed to the inner walls of the oviducts, no trace of an egg-capsule being found." "Each gill is, in reality, an oval plate lying parallel to the sagittal plane of the embryo, and connected to its neck by an exceedingly short peduncle which arises from the gill at a point rather dorsal and anterior to its geometric centre." Length of embryo 62 mm ., diameter 2.5 mm ., length of gill-plate 14 mm .

Remarks. Siphonops brasiliensis occurs with this form in the state of Santa Catharina, Brazil, and the two animals have been confused by

Yávra, by Nieden and by me. The Hamburg specimen was actually in my notes as the Siphonops. Except for one specimen of each form (with 133 primaries) the Siphonops has fewer primaries and the Chthonerpeton has more. The skull and the dentition afford perfectly diagnostic characters, and the anal disk of the Chthonerpeton is usually distinct enough.

Specimens seen, 5 , as follows:
Brazil:
prim. length diam. 1/d
São Paulo:

Franca	Mus. Paul.	950	133	350	8
anta Catharina:	MCZ 24593			47	
Joinville	166	510	9	57	
No locality	Mus. Nac. Braz. S29	144	215	5	43
"،	Hamburg 1937.	148	355	8	44
"	BMNH 1907-S-21, 1	144	335	9	37

Chthonerpeton petersir Boulenger

1882. Chthonerpeton petersii Boulenger, Cat. Batr. Brit. Mus. (2), p. 104, pl. 9, f. 2; 1895, Proc. Zool. Soc. London, p. 411; Nieden 1913, Gymnophiona, p. 24.

Type. BMINH 51-9-2-6.
Type locality. Upper Amazon.
Range. Known only from type locality.
Diagnosis. A Chthonerpeton with 145 primaries; 1/d 39; tentacle much closer to nostril than eye.

Description. I see no reason to alter Boulenger's original description, which follows. "Teeth small, numerous, subequal. Snout rounded, moderately prominent; eyes not distinct through the skin; tentacle close to and behind the nostril. Body elongate; 145 circular folds, complete except the anterior 28 , which are interrupted on the dorsal and ventral line. Tail indistinct, rounded. Uniform dark olive-grey, the eyes indicated by a whitish spot. Total length 620 millim.; greatest diameter of body 16 millim." "Anus largish, but smaller than in indistinctum." (Parker, in litt.)

Specimens seen, 1, the type.

Chthonerpeton indistinctum (Reinhardt and Lütken)

1861. Siphonops indistinctus Reinhardt and Lütken, Vid. Meddel. Kjobenhavn, p. 203; Duméril 1863, Mem. Soc. Sci. Nat. Cherbourg, p. 318, p. 1, f. 3; Wiedersheim 1879, Anat. Gymnophiona, pl. 2, f. 13, 15, 16, pl. 6, f. 68, pl. 9, f. 84-7.
1862. Chthonerpeton indistinctum Peters, Mon. Ak. Berlin, p. 929, 940, f. 9; Boulenger 1882, Cat. Batr. Brit. Mus. (2), p. 104; Cope 1889, BullUSNM 34, pl. 11, f. 1-6; Boulenger 1895, Proc. Zool. Soc. London, p. 411; Ihering 1911, Rev. Mus. Paulista, p. 107; Nieden 1913, Gymnophiona, p. 24, f. 8; Procter, 1923. Ann. Mag. Nat. Hist. (9), 11, p. 230; Gliesch 1929, Blätt. Aqua. Terr. 40, 13, p. 229, pl. 31; Gaggero 1934, Prelim. Ann. Mus. La•Plata 3, 1, p. 173.

Type. In Copenhagen Museum. Not seen. Collected by Prof. Kroyer of the frigate Bellona.

Type locality. Buenos Aires, Argentina.
Range. Argentina (Buenos Aires), Lruguay, Southern Brazil as far as Paraná.

Diagnosis. A Chthonerpeton with 76-87 primaries; $1 / \mathrm{d} 20-45$; anus much enlarged; tentacle slightly nearer nostril than eve; length 119593 mm .

Deseription. Primaries $76-87$; only three out of 27 specimens over 83 ; primaries indistinct and incomplete, distinct only on belly; tentacle a flap in a horseshoe-shaped groove, posterior to nostril, nearer to it than to eve (not so close to nostril as in petersii); uniform dark in color; anus in a large sucking disk; length from 119-593 mm.; no apparent change in length-diameter ratio with increase in size. A single 405 mm . specimen has $1 / \mathrm{d} 45 ; 20$ others have 23-36. Uniform dark in color. According to Peters (1879) and Wiedersheim (1879) the teeth are as follows: vomerine $5-3$; palatine $S-5$; premaxillary $5-6$; maxillary $9-8$; mandibular, 13 outer and 4 inner. Argentine specimens (10) have $76-$ 81 primaries (the type had $7 \$$); specimens from Brazil and Uruguay (12) have $76-87$.

Habits. Peters (1879) speaks of its being taken from "deep in the earth"; while Gleisch (1929) tells of a 405 mm . specimen in Porto Alegre, during a rain, being on the surface, apparently in a gutter, and noticed the enlarged anal disk functioning as a holdfast or sucker.

Remarks. This, the most common and best known of the species, is in some ways the most extreme. Reinhardt and Lütken, in the original description, mention a specimen in the Paris Museum, from Brazil, which they considered this species. They also had one from Buenos

Aires with 78 primaries. The Paris specimen was said to have 100 primaries, and to this day indistinctum is always said to have 78-100 primaries. I found two specimens in Paris labeled Cthonerpeton indistinctum; Paris 17 , Brazil, primaries 91 or 92 , length 261 mm ., diameter $6 \mathrm{~mm} ., 1 / \mathrm{d} 43$; and Paris 17a, Buenos Aires, primaries 78 . Paris 17 is, I imagine, the specimen referred to by Reinhardt and Lütken. It is a young Siphonops ammulatus, very dry, and with the tentacle much further from the eve than usual in that species, and I imagine that it was this feature which misled Reinhardt and Lütken. Duméril (1863) counted 98 primaries and mentions the white grooves and the tentacle position.

Specimens seen, 33, as follows:

Argentina

Southern Argent.	Munich
Buenos Aires	Paris 17a
"" ""	AMNH 11949
" "	Frankfort 2104a
No locality	Mus. Paul. 959
	"" " 959a

Berlin 26340
Berlin 26340
"" "
AMNH 23508
BMNH 1926-5-29-1"

Isla Ella, R. Paraná BLINH 1926-5-29-17
Lruguay:
Durazno
CSNM 65538

Brazil:
Rio Grande do Sul

Porto	Alegre	Berlin 9559	S0	355	13	27
"	\%	" 6803	80	160	6	27
"	،	"	-	160	5	32
"	"	" "	S6	210	7	30
"	"	" "	S0	330	11	30
"	"	BMNH S3-1-19-2	83	189	6	31
"	"	AMNH 23507	76	163	4.5	36
Cama	quam R	BMNH S9-8-24-4	S7	365	14	26

Gaggero (1934) has recorded it from the mouth of the Rio Santiago, Argentina.

Procter (1923) states that the Castro Tibeira specimen was taken from the belly of a Sorellina brandon-jonesii.

Typhlonectes Peters

1879. Typhlonectes Peters, Mon. Berlin Ak., p. 930, 941 (type compressicauda). 1912. Thyphlonectes Peracca, Mém. Soc. Sci. Neufchatel, 5, p. 111.

Note. I hereby designate Caccilia compressicauda Duméril and Bibron as the type of Typhlonectes Peters. The genus as originally described contained compressicauda, dorsalis, natans, and, with a query, syntrcmus.

Diagnosis. Caecilians without scales or secondaries; primaries poorly developed; eyes visible; two rows of teeth in lower jaw; no tail; anus in a well developed sucking disk; tentacle in a horseshoe-shaped groove, on side of head very close to and posterior to nostril; laterally flattened with a dorsal keel and fin in the posterior part of body; aquatic; primaries $77-105$; 1/d 12-41; length $140-695 \mathrm{~mm}$.; two species; three forms.

Range. Colombia, Venezuela, Guiana, Brazil; Atrato, Magdalena, Orinoco and Amazon systems.

Key to forms of Typhlonectes

A. Somewhat compressed; dorsal fin restricted to posterior; head large.
B. Primaries $\bar{i}-\delta_{7}$; Guiana and Brazil
compressicauda compressicauda
BB. Primaries 86-105; Venezuela and Colombia
compressicaude natans
AA. Extremely compressed; dorsal fin nearly to head; head small; primaries SS-104; Venezuela, Guiana, and Brazil .kaupii

Remarks. The genus is very close to Chthonerpeton. Among the forms, kuupii is decidedly the most specialized.

I have examined 5 S specimens, including types of compressicauda, natans, venezuelense, and dorsalis. I have not seen the type of kaupii, or of microcephala.

Typhlonectes compressicauda compressicauda (Duméril and Bibron)
1841. Caecilia compressicauda Duméril and Bibron, Erp. Gen. 8, p. 278; Gray 1850, Cat. Batr. Grad. Brit. Mus. p. 57; Duméril 1863, Mem. Soc. Sci. Nat. Cherbourg 9, p. 316; Peters 1874, Mon. Berlin Ak., p. 45 (habits); 1875 idem, p. 683, f. 1-4 (habits).
1879. Typhlonectes compressicauda Peters, idem, p. 941, f. 11; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 102; Sarasill and Sarasin 1887, Ergeb. Forsch. Ceylon, 2, p. 26, fig.; Boulenger 1895. Proc. Zool. Soc. London, p. 4111; Nieden 1913, Gymnophiona, p. 22, f. 16.
1912. Thyphlonectes compressicauda Fuhrmann, Mem. Soc. Sci. Neufchatel, 5, p. 119, f. 4.

Type. Paris 18.
Type locality. Cayenne.
Range. British Guiana to Para, Rio Purus, and Rio Solimoes.
Diagnosis. A Typhlonectes with fin in posterior third of body; primaries $\overline{7}-87$; 1 'd $12-24$; length $148-515 \mathrm{~mm}$.

Description. In general the larger specimens seem to be slimmer, but in these more or less flattened forms the length-diameter ratio is very uncertain. Only two specimens have the primaries below $\$ 3$. Secondaries have been recorded by Fuhrmann (1912) on material which I have not seen. In this species, and still more in natans, the primaries are
very hard to count, and indistinct. At the same time adventitious folds appear and are liable to be taken for primaries or secondaries or both. The primaries are all incomplete on the back, and no true secondaries are present. The color is uniform blackish.

Habits. Peters (1S74) states from a communication of Jelski that an adult female was taken in a fishing net in the Kaw river, eastern Guiana. Between the river and the house she gave birth to a single young. She was immediately killed, and five more young were found in the oviducts. The mother measures 500 mm ., the young one was 157 mm . long, and an embryo measured 136 mm . No gill slits were observed, but there were two large, flattened, allantoic gills which measured 55 mm . Peters (1875) figures one of these, and so do the Sarasins (1887).

A specimen in the American Museum, from Manáos, was found "in a dead log come up out of the water."

Remarks. This beast is closely related to natans. The ranges are adjacent, and the relationship so close that I regard the two as races. Fuhrmann (1912) came to the conclusion that Guiana compressicauda and Venezuelan animals were racially different, since according to him a specimen from Guiana had $S 4$ primaries, and two Venezuelan specimens had 94 and 95 primaries. He therefore called the Venezuelan form Typhloncetes compressicauda renezuelcnse. His primary count for this form does not differentiate it from natans, for which he himself gives $90-95$. He regarded the difference between compressicauda and natans to be the higher head and close approximation of nostril and tentacle in compressicauda, as against the flatter head and less approximated tentacle and nostril of natans. These differences are scarcely appreciable, although Fuhrmann figures them. His figure of venezuelense, furthermore, shows a quite intermediate condition in these two respects between his figures of compressicauda and of natans. I regard the primary count as of more importance, and judged by that criterion, venezuelense is indistinguishable from natans.

Specimens seen, 17, as follows:

British Guiana :

Harauruni Cr., Demarara R.
U. Mich. S2S5t

French Guiana:
$\begin{array}{llllll}\text { Kaw River } & \text { Berlin } 8170 & - & 157 & 10 & 16\end{array}$

No data		83	-	-	YPE
	Paris 18				
	18	-	-	-	
	18	S4	150	9	YPE 15
	18a	83	455	20	YPE 23
No locality	Vienna	S5	148	-	-
Brazil:					
Para	MCZ 289	S5	495	25	20
Monte Alegre, Grande Para					
	BMNH 1926-10-28-7	St	375	23	16
"	B.MNH 1926-10-28-7	-	175	15	12
Manáos	AMNH 12979	87	-	19	-
"	BMNH 93-4-24-2	St	515	24	21
"	" 1913-3-11-1	S4	215	10	21
"	1916-4-12-1	77?	-	-	-
"	" 1916-4-12-2	85	391	27	14
Ayapua, Rio Purus	Berlin 31991a	S6	345	20	17
Solimoes, Amazonas	Berlin 30991b	-	435	18	24

Typhlonectes compressicauda natans (Fischer)
1879. Caecilia natans Fischer, in Peters, Mon. Berlin Ak., p. 941; 1880 Arch. Naturg. 46, 1, p. 217, pl. 8, f. 5-7.
1879. Typhlonectes natans Peters, loc. cit., p. 941; Boulenger 1882, Cat. Batr. Grad. Brit. Mus. (2), p. 103, pl. 9, f. 3; 1895, Proc. Zool. Soc. London p. 411; Nieden 1913, Gymnophiona, p. 23, f. 17; Heimroth 1915, Blätt. Aqua. Terr. 26, p. 34 (habits).
1912. Thyphlonectes natans Peracca, Mém. Soc. Sci. Neufchatel, 5, p. 111; Fuhrmann 1912, t. c., p. 113, f. 1-3.
1888. Typhlonectes compressicaudus Cope, Journ. Morph. 2, 2, 1889, pl. 22, f. 5 (otic region); 1889, Bull. U. S. Nat. Mus. 34, pl. 51, f. 20 (hyoid).
1912. Thyphlonectes compressicauda venezuelense Fuhrmann, loc. cit., p. 124. f. 5-6 (Maracaibo, Venezuela, COTYPE Hamburg 823).

Types. Berlin 9522-3, 3772; AMNH 23486; BMINH 81-4-9, 5.
Type locality. Cauca R., Colombia.
Range. Colombia, Venezuela, Trinidad.
Diagnosis. A Typhlonectes with dorsal fin in posterior part of body; primaries S6-105, incomplete; 1/d 15-41; length 140-615.

Description. Only a single specimen out of 18 has the primaries above the range of $86-97$. Peters and Fuhrmann have both counted secondaries in this form. I have been unable to make any out. There is no clear indication of any change of proportions with age. I find four inner mandibular teeth in U. Mich. 60S81. Fischer (1880) gives for this row 14 , and for the outer mandibular 38, for the maxillary $40-42$, and for the vomerine $34-36$. These are total counts, and the Michigan specimen then has 8 inner mandibular teeth as against 14 in the type.

The color is rather uniformly dark. Fischer says a little lighter below. The anal disk is white. Its diameter in the two types was 7 and 6 mm . respectively.

Habits. The types were taken by fishing. A specimen from Quesada R. was "floundering in test pit." Peracea (1914) says "caught on a line at Puerto Berrio in the Magdalena." Heimroth (1915) says he received a 480 mm . female July 14, 1914. On Jan. 16, 1915, four young were born to her. They measured $190-200 \mathrm{~mm}$. and had no sign of gills. MCZ 24525 is 140 mm . long. It has no sign of gills or gill slits.

Remarlis. The relationship of natans to compressicauda, and the status of renezuelense as a synonym of natans have been dealt with under compressicauda. The Bogotá specimens must be mislabelled.

Specimens seen, 29, as follows:

Colombia: Caceres	BILNH S1-4-9, 5		prim. lgth. diam. $1 / \mathrm{d}$			
			-	369	11	33
"	Berlin 9		93	462	1.5	30
"	" 3		90	470	25	19
"	AMNH	496	94	511	18	TYPE
Cauca	Berlin 9.		103	525	15	35
Cauca R., W. of Medellin						
	Inst. La		88	410	10	41
Honda	AMNH	22592	89	48.5	18	27
	M1: Z	9316	92	325	12	27
Medellin	AMNH	12978	96	540	25	22
Chícuta	MCZ	24.524	91	580	30	19
	MCZ	24525	92	140	S	17
Bogotá (?)	AMNH	23418	S6	440	14	31
	*	23419	-	4.0	15	31
"	"	$23+20$	-	45	18	25

Quesada R., Atrato R.
AMNH 499TS
Sopleviento U. Mich. 60SS1

Barranquilla Hamburg 335
Venezuela:
Maracaibo Hamburg 823
Trimidad:
Dresden 639
South America:

	Vienna		105	615	23	26
"Belize"	USN1N	30534	92	32.5	12	27

It has been reported from Puerto Berrio, on the Magdalena, by Peracca (1914).

Typhlonectes kaupil (Berthold)

1859. Caecilia Kaupii Berthold, Nachr. Ges. Göttingen, p. 181.
1860. Siphonops Kaupii Keferstein, idem, p. 361.
1861. Typhlonectes kaupii Boulenger, Ann. Mag. Nat. Hist. (6), 8, p. 457 ; 1895, Proc. Zool. Soc. London, p. 411; Nieden 1913, Gymnophiona, p. 23.
1862. Caccilia dorsalis Peters, Mon. Ak. Berlin, p. 459, f. 1-3 (Angostura, Ciudad Bolivar, Venezuela).
1863. Typhlonectes dorsalis Peters, Mon. Ak. Berlin, p. 941; Boulenger, Cat. Batr. Grad. Brit. Mus. (2), p. 103.
1864. Thyphlonectes dorsalis Fuhrmann, Mem. Soc. Sci. Neufchatel 5, p. 124, f. 7.
1865. Chthonerpeton microcephalum Miranda Ribeiro, O Campo, May, p. 66.

Type. Not seen; in Göttingen Museum.
Type locality. Angostura, Venezuela [now Ciudad Bolivar].
Range. Venezuela to Brazil and Peru; specifically, from Cindad Bolivar to Para, Matto Grosso, Iquitos, and middle Lcayali.

Diagnosis. A Typhlonectes with dorsal fin almost to head; head very small; tentacle close behind nostril; anal disk very large; primaries SS-104.

Description. No trace of secondaries; primaries SS-104, all complete; eye visible; dorsal fin or keel begimning on the neck; body very com-
pressed posteriorly; anus in the hinder part of a large sucking disk (much larger than head in ANS 4926; $51 / 2 \mathrm{~mm}$. in Berlin 10104); $1 / \mathrm{d}$ difficult to measure, approximately $20-36$; smallest seen 167 mm . long; largest 695 mm . long; light brown, primaries blackish.

Habits. The specimen from Manáos was taken "under stones in 4 inches of water near rock ledge of river." That from Belém was from "docks in river."

Remarks. This is the most specialized of the group in compression of body, extent of fin, and size of anal disk. The complete folds seem more primitive than those of the others, but in all other ways it is much the most specialized. The type of kaupii had 104 primaries, two more than any I have seen.

Specimens seen, 19, as follows:
Venezuela:

Guiana:

	ANS	4927	98	300	15	20
razil:						
Para	Hamburg	1928	98	335	13	25
Para, Belém	Carnegie	2908	92	410	$7-14$	28
R. Negro, Manáos	".	2906	88	172	6	28
"Brazil"	Vienna		$?$	480	$?$	$?$
"" locality	ANS	4926	92	405	14	29
No	BNINH 98-10-17-7	93	167	6	28	
" "	" $98-10-17-8$	96	260	11	24	

Peru:
R. Ampiyacu, near Pebas

	USNM	101105	95	425	16	27
Iquitos	AMNH	42853	99	545	15	36
""	AMNH	42854	98	545	19	29
San Antonio, Rio Itaya						
AMNH	42857	96	695	20	35	
Rio Pisqui (mid. Ucayali)						
AMNH	42856	98	505	14	36	

No locality:

BIINH 98-10-17,					
"	$98-10-17, S$	93	167	6	28
	260	11	24		

Note. Peters (1877) gives 99 primaries for the type of dorsalis, and says it was 265 mm . long, diameter 7 mm . This fits pretty well to my count and measurements for Berlin 9092 and would seem to make that specimen the type were it not that Berlin 10104 is labeled "type." Probably it is best to regard them as cotypes.

Dr. Joseph Bailey very kindly furnished me with a copy of the description of Chthonerpcton microcephalum Miranda Ribeiro, and having examined the type, wrote me that it was a Typhlonectes. The description fully confirms this and indicates 92 primaries, a length of 560 mm ., a diameter of 23 mm ., and a length/diameter ratio of 24 . These counts fall within the known variation of kaupii. The description mentions the small head, the complete dorsal fin fold, and the very large anal disk.

The type came from Matto Grosso collected by Rondon. Bailey writes me that "the Matto Grosso material all came from the northern and western sections of the state, and the snake material has a large number of Amazonian elements in it. I think most of it came from the Serra de Parecis or along what is now Rio Roosevelt."

INCERTAE SEDIS

"Siphonops syntremus" Cope

1866. Siphonops syntremus Cope, Proc. Acad. Nat. Sci. Philadelphia, p. 129. 1879.? Typhlonectes syntremus Peters, Mon. Ak. Berlin, p. 942.
1885.? Dermophis syntremus Cope, Proc. Amer. Phil. Soc. 22, p. 171.

As Cope is the only herpetologist known to have examined the unique type of his Siphonops syntremus, I quote his remarks:
"A collection from Belize from Dr. Parsons." "The same correspondent sends from the neighboring region of Honduras Ninia collaris and Rhegnops visoninus." "Siphonops syntremus sp. nov. This species differs from the four hitherto known [Siphonops ammulatus, Siphonops brasiliensis, Chthonerpeton indistinctum, Synnozis mexicanus, all considered as Siphonops in 1866] in the close approximation of the narial and tentacular openings; the latter lie a little behind the former, and are slightly larger. The minute eyes are just risible; the internal nares are some distance behind the palatine arch.

Muzzle projecting, obtuse in profile; from above narrowed, rounded. Teeth large, five on each ramus mandibuli. A gular, and strong postgular fold; 130 annular plicae, which are complete, except some slight ventral interruption anteriorly; the posterior third of the length with intermediate annuli, which are at first lateral only, then complete above, entirely complete on the terminal inch; the whole number will then be about 170 annuli. Form of body rather slender; tail depressed at end, short, acuminate. Color dark plumbeous, annuli yellow lined; head sellowish brown. This species resembles the Cacilia ochrocephala [described in the same paper], but is primarily distinguished by the position of the foramen, and of the inner nares, also by the color and character of the annuli."

Under Dermophus syntremis, in 1885, Cope says "I refer this species here provisionally only, as I have not been able to find the type specimen. Belize."

If it were not for this second statement the arrangement of the species in the original paper would tend to give the impression that the provenance of syntrcmus was "the neighboring region of Honduras."

If the description was accurate syntremus belongs to none of the species (or, indeed, none of the genera) listed in this paper. No other American form has the combination of the tentacle position of Typhlonectes or Chthonerpeton, with the primaries (130) and secondaries (40) of a Gymnopis or a Caecilia, the teeth of a Caecilia, and the "short, acuminate" tail of a Rhinatrema. As described, the species demands a new genus for its reception.

We have no right to assume that the description was inaccurate. Caccilia ochroccphala was described in the same paper, the type is extant, and the description is very accurate.

If the description was inaccurate, it is possible that it dealt with a specimen of Giymnopis oligozona (primaries 130-135, secondaries 6274) from the same general area. G. oligozona was described from a specimen without data, by Cope, in 1877 , and it is barely possible that the type of oligozona was previously the type of syntremus.

The National Museum (which contains the Parsons collection) has a specimen of Typhlonectes compressicauda natans labelled "Belize." This might, as a remote possibility, have been the type of syntremus.

No measurements were given for syntremus.
I cannot place this species in any genus known to me. I do not wish to name a new genus on the basis of a single unexamined specimen. I therefore merely set down the pertinent facts and refrain from any action.

[^0]: ${ }^{1}$ Contributions from the Biology Department, Haverford College, No. 8 .

